awacke1 commited on
Commit
6b416b0
·
verified ·
1 Parent(s): 0b13d03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +221 -132
app.py CHANGED
@@ -6,6 +6,11 @@ import csv
6
  import time
7
  from dataclasses import dataclass
8
  import zipfile
 
 
 
 
 
9
 
10
  st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
11
 
@@ -34,84 +39,122 @@ class ModelBuilder:
34
  self.model = None
35
  self.tokenizer = None
36
  def load_model(self, model_path: str, config: ModelConfig):
37
- from transformers import AutoModelForCausalLM, AutoTokenizer
38
- import torch
39
- self.model = AutoModelForCausalLM.from_pretrained(model_path)
40
- self.tokenizer = AutoTokenizer.from_pretrained(model_path)
41
- if self.tokenizer.pad_token is None:
42
- self.tokenizer.pad_token = self.tokenizer.eos_token
43
- self.config = config
44
- self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
 
 
 
 
 
 
45
  def fine_tune(self, csv_path):
46
- from torch.utils.data import Dataset, DataLoader
47
- import torch
48
- class SFTDataset(Dataset):
49
- def __init__(self, data, tokenizer):
50
- self.data = data
51
- self.tokenizer = tokenizer
52
- def __len__(self):
53
- return len(self.data)
54
- def __getitem__(self, idx):
55
- prompt = self.data[idx]["prompt"]
56
- response = self.data[idx]["response"]
57
- inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
58
- labels = inputs["input_ids"].clone()
59
- labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
60
- return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
61
- data = []
62
- with open(csv_path, "r") as f:
63
- reader = csv.DictReader(f)
64
- for row in reader:
65
- data.append({"prompt": row["prompt"], "response": row["response"]})
66
- dataset = SFTDataset(data, self.tokenizer)
67
- dataloader = DataLoader(dataset, batch_size=2)
68
- optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
69
- self.model.train()
70
- for _ in range(1):
71
- for batch in dataloader:
72
- optimizer.zero_grad()
73
- outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()})
74
- outputs.loss.backward()
75
- optimizer.step()
 
 
 
 
 
 
76
  def evaluate(self, prompt: str):
77
- import torch
78
- self.model.eval()
79
- with torch.no_grad():
80
- inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
81
- outputs = self.model.generate(**inputs, max_new_tokens=50)
82
- return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
83
 
84
  class DiffusionBuilder:
85
  def __init__(self):
86
  self.config = None
87
  self.pipeline = None
88
  def load_model(self, model_path: str, config: DiffusionConfig):
89
- from diffusers import StableDiffusionPipeline
90
- import torch
91
- self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
92
- self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
93
- self.config = config
 
 
 
 
 
 
94
  def fine_tune(self, images, texts):
95
- import torch
96
- from PIL import Image
97
- import numpy as np
98
- optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
99
- self.pipeline.unet.train()
100
- for _ in range(1):
101
- for img, text in zip(images, texts):
102
- optimizer.zero_grad()
103
- img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)
104
- latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
105
- noise = torch.randn_like(latents)
106
- timesteps = torch.randint(0, 1000, (1,), device=latents.device)
107
- noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
108
- text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
109
- pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
110
- loss = torch.nn.functional.mse_loss(pred_noise, noise)
111
- loss.backward()
112
- optimizer.step()
 
 
 
 
 
 
113
  def generate(self, prompt: str):
114
- return self.pipeline(prompt, num_inference_steps=20).images[0]
 
 
 
 
 
 
 
115
 
116
  # Utilities
117
  def get_download_link(file_path, mime_type="text/plain", label="Download"):
@@ -174,12 +217,16 @@ if selected_model != "None" and st.sidebar.button("Load Model 📂"):
174
  builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
175
  config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
176
  with st.spinner("Loading... ⏳"):
177
- builder.load_model(selected_model, config)
178
- st.session_state['builder'] = builder
179
- st.session_state['model_loaded'] = True
 
 
 
 
180
 
181
  # Tabs
182
- tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Fine-Tune Titans 🔧", "Test Titans 🧪", "Camera Snap 📷"])
183
 
184
  with tab1:
185
  st.header("Build Titan 🌱 (Quick Start!)")
@@ -189,12 +236,74 @@ with tab1:
189
  config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
190
  builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
191
  with st.spinner("Fetching... ⏳"):
192
- builder.load_model(base_model, config)
193
- st.session_state['builder'] = builder
194
- st.session_state['model_loaded'] = True
195
- st.success("Titan up! 🎉")
 
 
 
196
 
197
  with tab2:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
  st.header("Fine-Tune Titans 🔧 (Tune Fast!)")
199
  if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
200
  st.warning("Load a Titan first! ⚠️")
@@ -203,24 +312,32 @@ with tab2:
203
  st.subheader("NLP Tune 🧠")
204
  uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
205
  if uploaded_csv and st.button("Tune NLP 🔄"):
206
- with open("temp.csv", "wb") as f:
207
- f.write(uploaded_csv.read())
208
- st.session_state['builder'].fine_tune("temp.csv")
209
- st.success("NLP sharpened! 🎉")
 
 
 
 
210
  elif isinstance(st.session_state['builder'], DiffusionBuilder):
211
  st.subheader("CV Tune 🎨")
212
  captured_images = get_gallery_files(["png"])
213
  if len(captured_images) >= 2:
214
  texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)]
215
  if st.button("Tune CV 🔄"):
216
- from PIL import Image
217
- images = [Image.open(img) for img in captured_images]
218
- st.session_state['builder'].fine_tune(images, texts)
219
- st.success("CV polished! 🎉")
 
 
 
 
220
  else:
221
  st.warning("Capture at least 2 images first! ⚠️")
222
 
223
- with tab3:
224
  st.header("Test Titans 🧪 (Quick Check!)")
225
  if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
226
  st.warning("Load a Titan first! ⚠️")
@@ -229,55 +346,27 @@ with tab3:
229
  st.subheader("NLP Test 🧠")
230
  prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test")
231
  if st.button("Test NLP ▶️"):
232
- result = st.session_state['builder'].evaluate(prompt)
233
- st.write(f"**Answer**: {result}")
 
 
 
 
234
  elif isinstance(st.session_state['builder'], DiffusionBuilder):
235
  st.subheader("CV Test 🎨")
236
  prompt = st.text_area("Prompt", "Neon Batman", key="cv_test")
237
  if st.button("Test CV ▶️"):
238
- with st.spinner("Generating... "):
239
- img = st.session_state['builder'].generate(prompt)
240
- st.image(img, caption="Generated Art", use_container_width=True)
241
-
242
- with tab4:
243
- st.header("Camera Snap 📷 (Sequence Shots!)")
244
- from streamlit_webrtc import webrtc_streamer
245
- ctx = webrtc_streamer(
246
- key="camera",
247
- video_processor_factory=VideoSnapshot,
248
- frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
249
- )
250
- if ctx.video_processor:
251
- delay = st.slider("Delay between captures (seconds)", 0, 10, 2)
252
- if st.button("Capture 6 Frames 📸"):
253
- captured_images = []
254
- for i in range(6):
255
- snapshot = ctx.video_processor.take_snapshot()
256
- if snapshot:
257
- filename = generate_filename(i)
258
- snapshot.save(filename)
259
- st.image(snapshot, caption=filename, use_container_width=True)
260
- captured_images.append(filename)
261
- time.sleep(delay)
262
- st.success("6 frames captured! 🎉")
263
- if len(captured_images) >= 2:
264
- st.session_state['captured_images'] = captured_images
265
 
266
- # Dataset and ZIP Download
267
- if 'captured_images' in st.session_state and len(st.session_state['captured_images']) >= 2:
268
- st.subheader("Diffusion SFT Dataset 🎨")
269
- sample_texts = ["Neon Hero", "Glowing Cape", "Spark Flyer", "Dark Knight", "Iron Shine", "Thunder Bolt"]
270
- dataset = list(zip(st.session_state['captured_images'], sample_texts[:len(st.session_state['captured_images'])]))
271
- st.code("\n".join([f"{i+1}. {text} -> {img}" for i, (img, text) in enumerate(dataset)]), language="text")
272
- if st.button("Download Dataset CSV 📝"):
273
- csv_path = f"diffusion_sft_{int(time.time())}.csv"
274
- with open(csv_path, "w", newline="") as f:
275
- writer = csv.writer(f)
276
- writer.writerow(["image", "text"])
277
- for img, text in dataset:
278
- writer.writerow([img, text])
279
- st.markdown(get_download_link(csv_path, "text/csv", "Download Dataset CSV"), unsafe_allow_html=True)
280
- if st.button("Download Images ZIP 📦"):
281
- zip_path = f"captured_images_{int(time.time())}.zip"
282
- zip_files(st.session_state['captured_images'], zip_path)
283
- st.markdown(get_download_link(zip_path, "application/zip", "Download Images ZIP"), unsafe_allow_html=True)
 
6
  import time
7
  from dataclasses import dataclass
8
  import zipfile
9
+ import logging
10
+
11
+ # Logging setup
12
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
13
+ logger = logging.getLogger(__name__)
14
 
15
  st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
16
 
 
39
  self.model = None
40
  self.tokenizer = None
41
  def load_model(self, model_path: str, config: ModelConfig):
42
+ try:
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+ import torch
45
+ logger.info(f"Loading NLP model: {model_path}")
46
+ self.model = AutoModelForCausalLM.from_pretrained(model_path)
47
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
48
+ if self.tokenizer.pad_token is None:
49
+ self.tokenizer.pad_token = self.tokenizer.eos_token
50
+ self.config = config
51
+ self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
52
+ logger.info("NLP model loaded successfully")
53
+ except Exception as e:
54
+ logger.error(f"Error loading NLP model: {str(e)}")
55
+ raise
56
  def fine_tune(self, csv_path):
57
+ try:
58
+ from torch.utils.data import Dataset, DataLoader
59
+ import torch
60
+ logger.info(f"Starting NLP fine-tuning with {csv_path}")
61
+ class SFTDataset(Dataset):
62
+ def __init__(self, data, tokenizer):
63
+ self.data = data
64
+ self.tokenizer = tokenizer
65
+ def __len__(self):
66
+ return len(self.data)
67
+ def __getitem__(self, idx):
68
+ prompt = self.data[idx]["prompt"]
69
+ response = self.data[idx]["response"]
70
+ inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
71
+ labels = inputs["input_ids"].clone()
72
+ labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
73
+ return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
74
+ data = []
75
+ with open(csv_path, "r") as f:
76
+ reader = csv.DictReader(f)
77
+ for row in reader:
78
+ data.append({"prompt": row["prompt"], "response": row["response"]})
79
+ dataset = SFTDataset(data, self.tokenizer)
80
+ dataloader = DataLoader(dataset, batch_size=2)
81
+ optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
82
+ self.model.train()
83
+ for _ in range(1):
84
+ for batch in dataloader:
85
+ optimizer.zero_grad()
86
+ outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()})
87
+ outputs.loss.backward()
88
+ optimizer.step()
89
+ logger.info("NLP fine-tuning completed")
90
+ except Exception as e:
91
+ logger.error(f"Error in NLP fine-tuning: {str(e)}")
92
+ raise
93
  def evaluate(self, prompt: str):
94
+ try:
95
+ import torch
96
+ logger.info(f"Evaluating NLP with prompt: {prompt}")
97
+ self.model.eval()
98
+ with torch.no_grad():
99
+ inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
100
+ outputs = self.model.generate(**inputs, max_new_tokens=50)
101
+ result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
102
+ logger.info(f"NLP evaluation result: {result}")
103
+ return result
104
+ except Exception as e:
105
+ logger.error(f"Error in NLP evaluation: {str(e)}")
106
+ raise
107
 
108
  class DiffusionBuilder:
109
  def __init__(self):
110
  self.config = None
111
  self.pipeline = None
112
  def load_model(self, model_path: str, config: DiffusionConfig):
113
+ try:
114
+ from diffusers import StableDiffusionPipeline
115
+ import torch
116
+ logger.info(f"Loading diffusion model: {model_path}")
117
+ self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
118
+ self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
119
+ self.config = config
120
+ logger.info("Diffusion model loaded successfully")
121
+ except Exception as e:
122
+ logger.error(f"Error loading diffusion model: {str(e)}")
123
+ raise
124
  def fine_tune(self, images, texts):
125
+ try:
126
+ import torch
127
+ from PIL import Image
128
+ import numpy as np
129
+ logger.info("Starting diffusion fine-tuning")
130
+ optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
131
+ self.pipeline.unet.train()
132
+ for _ in range(1):
133
+ for img, text in zip(images, texts):
134
+ optimizer.zero_grad()
135
+ img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0 # Normalize
136
+ latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
137
+ noise = torch.randn_like(latents)
138
+ timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device)
139
+ noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
140
+ text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
141
+ pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
142
+ loss = torch.nn.functional.mse_loss(pred_noise, noise)
143
+ loss.backward()
144
+ optimizer.step()
145
+ logger.info("Diffusion fine-tuning completed")
146
+ except Exception as e:
147
+ logger.error(f"Error in diffusion fine-tuning: {str(e)}")
148
+ raise
149
  def generate(self, prompt: str):
150
+ try:
151
+ logger.info(f"Generating image with prompt: {prompt}")
152
+ img = self.pipeline(prompt, num_inference_steps=20).images[0]
153
+ logger.info("Image generated successfully")
154
+ return img
155
+ except Exception as e:
156
+ logger.error(f"Error in image generation: {str(e)}")
157
+ raise
158
 
159
  # Utilities
160
  def get_download_link(file_path, mime_type="text/plain", label="Download"):
 
217
  builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
218
  config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
219
  with st.spinner("Loading... ⏳"):
220
+ try:
221
+ builder.load_model(selected_model, config)
222
+ st.session_state['builder'] = builder
223
+ st.session_state['model_loaded'] = True
224
+ st.success("Model loaded! 🎉")
225
+ except Exception as e:
226
+ st.error(f"Load failed: {str(e)}")
227
 
228
  # Tabs
229
+ tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titans 🔧", "Test Titans 🧪"])
230
 
231
  with tab1:
232
  st.header("Build Titan 🌱 (Quick Start!)")
 
236
  config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
237
  builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
238
  with st.spinner("Fetching... ⏳"):
239
+ try:
240
+ builder.load_model(base_model, config)
241
+ st.session_state['builder'] = builder
242
+ st.session_state['model_loaded'] = True
243
+ st.success("Titan up! 🎉")
244
+ except Exception as e:
245
+ st.error(f"Download failed: {str(e)}")
246
 
247
  with tab2:
248
+ st.header("Camera Snap 📷 (Sequence Shots!)")
249
+ from streamlit_webrtc import webrtc_streamer
250
+ ctx = webrtc_streamer(
251
+ key="camera",
252
+ video_processor_factory=VideoSnapshot,
253
+ frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}
254
+ )
255
+ if ctx.video_processor:
256
+ delay = st.slider("Delay between captures (seconds)", 0, 10, 2)
257
+ if st.button("Capture 6 Frames 📸"):
258
+ logger.info("Starting 6-frame capture")
259
+ captured_images = []
260
+ try:
261
+ for i in range(6):
262
+ snapshot = ctx.video_processor.take_snapshot()
263
+ if snapshot:
264
+ filename = generate_filename(i)
265
+ snapshot.save(filename)
266
+ st.image(snapshot, caption=filename, use_container_width=True)
267
+ captured_images.append(filename)
268
+ logger.info(f"Captured frame {i}: {filename}")
269
+ time.sleep(delay)
270
+ st.success("6 frames captured! 🎉")
271
+ st.session_state['captured_images'] = captured_images
272
+ except Exception as e:
273
+ st.error(f"Capture failed: {str(e)}")
274
+ logger.error(f"Error during capture: {str(e)}")
275
+
276
+ if 'captured_images' in st.session_state and len(st.session_state['captured_images']) >= 2:
277
+ st.subheader("Diffusion SFT Dataset 🎨")
278
+ sample_texts = ["Neon Hero", "Glowing Cape", "Spark Flyer", "Dark Knight", "Iron Shine", "Thunder Bolt"]
279
+ dataset = list(zip(st.session_state['captured_images'], sample_texts[:len(st.session_state['captured_images'])]))
280
+ st.code("\n".join([f"{i+1}. {text} -> {img}" for i, (img, text) in enumerate(dataset)]), language="text")
281
+ if st.button("Download Dataset CSV 📝"):
282
+ logger.info("Generating dataset CSV")
283
+ try:
284
+ csv_path = f"diffusion_sft_{int(time.time())}.csv"
285
+ with open(csv_path, "w", newline="") as f:
286
+ writer = csv.writer(f)
287
+ writer.writerow(["image", "text"])
288
+ for img, text in dataset:
289
+ writer.writerow([img, text])
290
+ st.markdown(get_download_link(csv_path, "text/csv", "Download Dataset CSV"), unsafe_allow_html=True)
291
+ logger.info("Dataset CSV generated")
292
+ except Exception as e:
293
+ st.error(f"CSV generation failed: {str(e)}")
294
+ logger.error(f"Error generating CSV: {str(e)}")
295
+ if st.button("Download Images ZIP 📦"):
296
+ logger.info("Generating images ZIP")
297
+ try:
298
+ zip_path = f"captured_images_{int(time.time())}.zip"
299
+ zip_files(st.session_state['captured_images'], zip_path)
300
+ st.markdown(get_download_link(zip_path, "application/zip", "Download Images ZIP"), unsafe_allow_html=True)
301
+ logger.info("Images ZIP generated")
302
+ except Exception as e:
303
+ st.error(f"ZIP generation failed: {str(e)}")
304
+ logger.error(f"Error generating ZIP: {str(e)}")
305
+
306
+ with tab3:
307
  st.header("Fine-Tune Titans 🔧 (Tune Fast!)")
308
  if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
309
  st.warning("Load a Titan first! ⚠️")
 
312
  st.subheader("NLP Tune 🧠")
313
  uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
314
  if uploaded_csv and st.button("Tune NLP 🔄"):
315
+ logger.info("Initiating NLP fine-tune")
316
+ try:
317
+ with open("temp.csv", "wb") as f:
318
+ f.write(uploaded_csv.read())
319
+ st.session_state['builder'].fine_tune("temp.csv")
320
+ st.success("NLP sharpened! 🎉")
321
+ except Exception as e:
322
+ st.error(f"NLP fine-tune failed: {str(e)}")
323
  elif isinstance(st.session_state['builder'], DiffusionBuilder):
324
  st.subheader("CV Tune 🎨")
325
  captured_images = get_gallery_files(["png"])
326
  if len(captured_images) >= 2:
327
  texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)]
328
  if st.button("Tune CV 🔄"):
329
+ logger.info("Initiating CV fine-tune")
330
+ try:
331
+ from PIL import Image
332
+ images = [Image.open(img) for img in captured_images]
333
+ st.session_state['builder'].fine_tune(images, texts)
334
+ st.success("CV polished! 🎉")
335
+ except Exception as e:
336
+ st.error(f"CV fine-tune failed: {str(e)}")
337
  else:
338
  st.warning("Capture at least 2 images first! ⚠️")
339
 
340
+ with tab4:
341
  st.header("Test Titans 🧪 (Quick Check!)")
342
  if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
343
  st.warning("Load a Titan first! ⚠️")
 
346
  st.subheader("NLP Test 🧠")
347
  prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test")
348
  if st.button("Test NLP ▶️"):
349
+ logger.info("Running NLP test")
350
+ try:
351
+ result = st.session_state['builder'].evaluate(prompt)
352
+ st.write(f"**Answer**: {result}")
353
+ except Exception as e:
354
+ st.error(f"NLP test failed: {str(e)}")
355
  elif isinstance(st.session_state['builder'], DiffusionBuilder):
356
  st.subheader("CV Test 🎨")
357
  prompt = st.text_area("Prompt", "Neon Batman", key="cv_test")
358
  if st.button("Test CV ▶️"):
359
+ logger.info("Running CV test")
360
+ try:
361
+ with st.spinner("Generating... "):
362
+ img = st.session_state['builder'].generate(prompt)
363
+ st.image(img, caption="Generated Art", use_container_width=True)
364
+ except Exception as e:
365
+ st.error(f"CV test failed: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366
 
367
+ # Display Logs
368
+ st.sidebar.subheader("Action Logs 📜")
369
+ log_container = st.sidebar.empty()
370
+ with log_container:
371
+ for record in logger.handlers[0].buffer:
372
+ st.write(f"{record.asctime} - {record.levelname} - {record.message}")