awacke1 commited on
Commit
b5f3dfb
·
verified ·
1 Parent(s): 77df50a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +721 -0
app.py ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import glob
4
+ import base64
5
+ import time
6
+ import shutil
7
+ import zipfile
8
+ import re
9
+ import logging
10
+ import asyncio
11
+ import random
12
+ from io import BytesIO
13
+ from datetime import datetime
14
+ import pytz
15
+ from dataclasses import dataclass
16
+ from typing import Optional
17
+
18
+ import streamlit as st
19
+ import pandas as pd
20
+ import torch
21
+ import fitz
22
+ import requests
23
+ import aiofiles
24
+ from PIL import Image
25
+ from diffusers import StableDiffusionPipeline
26
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
27
+ from openai import OpenAI # Updated import for new API
28
+
29
+ # --- OpenAI Setup ---
30
+ client = OpenAI(
31
+ api_key=os.getenv('OPENAI_API_KEY'),
32
+ organization=os.getenv('OPENAI_ORG_ID')
33
+ )
34
+
35
+ # --- Logging ---
36
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
37
+ logger = logging.getLogger(__name__)
38
+ log_records = []
39
+ class LogCaptureHandler(logging.Handler):
40
+ def emit(self, record):
41
+ log_records.append(record)
42
+ logger.addHandler(LogCaptureHandler())
43
+
44
+ # --- Streamlit Page Config ---
45
+ st.set_page_config(
46
+ page_title="AI Vision & SFT Titans 🚀",
47
+ page_icon="🤖",
48
+ layout="wide",
49
+ initial_sidebar_state="expanded",
50
+ menu_items={
51
+ 'Get Help': 'https://huggingface.co/awacke1',
52
+ 'Report a Bug': 'https://huggingface.co/spaces/awacke1',
53
+ 'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
54
+ }
55
+ )
56
+
57
+ # --- Session State Defaults ---
58
+ if 'history' not in st.session_state:
59
+ st.session_state['history'] = []
60
+ if 'builder' not in st.session_state:
61
+ st.session_state['builder'] = None
62
+ if 'model_loaded' not in st.session_state:
63
+ st.session_state['model_loaded'] = False
64
+ if 'processing' not in st.session_state:
65
+ st.session_state['processing'] = {}
66
+ if 'asset_checkboxes' not in st.session_state:
67
+ st.session_state['asset_checkboxes'] = {}
68
+ if 'downloaded_pdfs' not in st.session_state:
69
+ st.session_state['downloaded_pdfs'] = {}
70
+ if 'unique_counter' not in st.session_state:
71
+ st.session_state['unique_counter'] = 0
72
+ if 'selected_model_type' not in st.session_state:
73
+ st.session_state['selected_model_type'] = "Causal LM"
74
+ if 'selected_model' not in st.session_state:
75
+ st.session_state['selected_model'] = "None"
76
+ if 'cam0_file' not in st.session_state:
77
+ st.session_state['cam0_file'] = None
78
+ if 'cam1_file' not in st.session_state:
79
+ st.session_state['cam1_file'] = None
80
+
81
+ # --- Model & Diffusion DataClasses ---
82
+ @dataclass
83
+ class ModelConfig:
84
+ name: str
85
+ base_model: str
86
+ size: str
87
+ domain: Optional[str] = None
88
+ model_type: str = "causal_lm"
89
+ @property
90
+ def model_path(self):
91
+ return f"models/{self.name}"
92
+
93
+ @dataclass
94
+ class DiffusionConfig:
95
+ name: str
96
+ base_model: str
97
+ size: str
98
+ domain: Optional[str] = None
99
+ @property
100
+ def model_path(self):
101
+ return f"diffusion_models/{self.name}"
102
+
103
+ # --- Model Builders ---
104
+ class ModelBuilder:
105
+ def __init__(self):
106
+ self.config = None
107
+ self.model = None
108
+ self.tokenizer = None
109
+ self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂",
110
+ "Training complete! Time for a binary coffee break. ☕"]
111
+ def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
112
+ with st.spinner(f"Loading {model_path}... ⏳"):
113
+ self.model = AutoModelForCausalLM.from_pretrained(model_path)
114
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
115
+ if self.tokenizer.pad_token is None:
116
+ self.tokenizer.pad_token = self.tokenizer.eos_token
117
+ if config:
118
+ self.config = config
119
+ self.model.to("cuda" if torch.cuda.is_available() else "cpu")
120
+ st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
121
+ return self
122
+ def save_model(self, path: str):
123
+ with st.spinner("Saving model... 💾"):
124
+ os.makedirs(os.path.dirname(path), exist_ok=True)
125
+ self.model.save_pretrained(path)
126
+ self.tokenizer.save_pretrained(path)
127
+ st.success(f"Model saved at {path}! ✅")
128
+
129
+ class DiffusionBuilder:
130
+ def __init__(self):
131
+ self.config = None
132
+ self.pipeline = None
133
+ def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
134
+ with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
135
+ self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
136
+ if config:
137
+ self.config = config
138
+ st.success("Diffusion model loaded! 🎨")
139
+ return self
140
+ def save_model(self, path: str):
141
+ with st.spinner("Saving diffusion model... 💾"):
142
+ os.makedirs(os.path.dirname(path), exist_ok=True)
143
+ self.pipeline.save_pretrained(path)
144
+ st.success(f"Diffusion model saved at {path}! ✅")
145
+ def generate(self, prompt: str):
146
+ return self.pipeline(prompt, num_inference_steps=20).images[0]
147
+
148
+ # --- Utility Functions ---
149
+ def generate_filename(sequence, ext="png"):
150
+ timestamp = time.strftime("%d%m%Y%H%M%S")
151
+ return f"{sequence}_{timestamp}.{ext}"
152
+
153
+ def pdf_url_to_filename(url):
154
+ safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
155
+ return f"{safe_name}.pdf"
156
+
157
+ def get_download_link(file_path, mime_type="application/pdf", label="Download"):
158
+ with open(file_path, 'rb') as f:
159
+ data = f.read()
160
+ b64 = base64.b64encode(data).decode()
161
+ return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
162
+
163
+ def zip_directory(directory_path, zip_path):
164
+ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
165
+ for root, _, files in os.walk(directory_path):
166
+ for file in files:
167
+ zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
168
+
169
+ def get_model_files(model_type="causal_lm"):
170
+ path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
171
+ dirs = [d for d in glob.glob(path) if os.path.isdir(d)]
172
+ return dirs if dirs else ["None"]
173
+
174
+ def get_gallery_files(file_types=["png", "pdf"]):
175
+ return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
176
+
177
+ def get_pdf_files():
178
+ return sorted(glob.glob("*.pdf"))
179
+
180
+ def download_pdf(url, output_path):
181
+ try:
182
+ response = requests.get(url, stream=True, timeout=10)
183
+ if response.status_code == 200:
184
+ with open(output_path, "wb") as f:
185
+ for chunk in response.iter_content(chunk_size=8192):
186
+ f.write(chunk)
187
+ return True
188
+ except requests.RequestException as e:
189
+ logger.error(f"Failed to download {url}: {e}")
190
+ return False
191
+
192
+ # --- Original PDF Snapshot & OCR Functions ---
193
+ async def process_pdf_snapshot(pdf_path, mode="single"):
194
+ start_time = time.time()
195
+ status = st.empty()
196
+ status.text(f"Processing PDF Snapshot ({mode})... (0s)")
197
+ try:
198
+ doc = fitz.open(pdf_path)
199
+ output_files = []
200
+ if mode == "single":
201
+ page = doc[0]
202
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
203
+ output_file = generate_filename("single", "png")
204
+ pix.save(output_file)
205
+ output_files.append(output_file)
206
+ elif mode == "twopage":
207
+ for i in range(min(2, len(doc))):
208
+ page = doc[i]
209
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
210
+ output_file = generate_filename(f"twopage_{i}", "png")
211
+ pix.save(output_file)
212
+ output_files.append(output_file)
213
+ elif mode == "allpages":
214
+ for i in range(len(doc)):
215
+ page = doc[i]
216
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
217
+ output_file = generate_filename(f"page_{i}", "png")
218
+ pix.save(output_file)
219
+ output_files.append(output_file)
220
+ doc.close()
221
+ elapsed = int(time.time() - start_time)
222
+ status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
223
+ update_gallery()
224
+ return output_files
225
+ except Exception as e:
226
+ status.error(f"Failed to process PDF: {str(e)}")
227
+ return []
228
+
229
+ async def process_ocr(image, output_file):
230
+ start_time = time.time()
231
+ status = st.empty()
232
+ status.text("Processing GOT-OCR2_0... (0s)")
233
+ tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
234
+ model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
235
+ temp_file = f"temp_{int(time.time())}.png"
236
+ image.save(temp_file)
237
+ result = model.chat(tokenizer, temp_file, ocr_type='ocr')
238
+ os.remove(temp_file)
239
+ elapsed = int(time.time() - start_time)
240
+ status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
241
+ async with aiofiles.open(output_file, "w") as f:
242
+ await f.write(result)
243
+ update_gallery()
244
+ return result
245
+
246
+ async def process_image_gen(prompt, output_file):
247
+ start_time = time.time()
248
+ status = st.empty()
249
+ status.text("Processing Image Gen... (0s)")
250
+ if st.session_state['builder'] and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline:
251
+ pipeline = st.session_state['builder'].pipeline
252
+ else:
253
+ pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
254
+ gen_image = pipeline(prompt, num_inference_steps=20).images[0]
255
+ elapsed = int(time.time() - start_time)
256
+ status.text(f"Image Gen completed in {elapsed}s!")
257
+ gen_image.save(output_file)
258
+ update_gallery()
259
+ return gen_image
260
+
261
+ # --- Updated Function: Process an image (PIL) with a custom prompt using GPT ---
262
+ def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
263
+ buffered = BytesIO()
264
+ image.save(buffered, format="PNG")
265
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
266
+ messages = [{
267
+ "role": "user",
268
+ "content": [
269
+ {"type": "text", "text": prompt},
270
+ {
271
+ "type": "image_url",
272
+ "image_url": {
273
+ "url": f"data:image/png;base64,{img_str}",
274
+ "detail": detail # Added detail parameter
275
+ }
276
+ }
277
+ ]
278
+ }]
279
+ try:
280
+ response = client.chat.completions.create(
281
+ model=model,
282
+ messages=messages,
283
+ max_tokens=300
284
+ )
285
+ return response.choices[0].message.content
286
+ except Exception as e:
287
+ return f"Error processing image with GPT: {str(e)}"
288
+
289
+ # --- Updated Function: Process text with GPT ---
290
+ def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
291
+ messages = [{"role": "user", "content": prompt + "\n\n" + text}]
292
+ try:
293
+ response = client.chat.completions.create(
294
+ model=model,
295
+ messages=messages,
296
+ max_tokens=300
297
+ )
298
+ return response.choices[0].message.content
299
+ except Exception as e:
300
+ return f"Error processing text with GPT: {str(e)}"
301
+
302
+ # --- Sidebar Setup ---
303
+ st.sidebar.subheader("Gallery Settings")
304
+ if 'gallery_size' not in st.session_state:
305
+ st.session_state['gallery_size'] = 2 # Default value
306
+ st.session_state['gallery_size'] = st.sidebar.slider(
307
+ "Gallery Size",
308
+ 1, 10, st.session_state['gallery_size'],
309
+ key="gallery_size_slider"
310
+ )
311
+
312
+ # --- Updated Gallery Function ---
313
+ def update_gallery():
314
+ all_files = get_gallery_files()
315
+ if all_files:
316
+ st.sidebar.subheader("Asset Gallery 📸📖")
317
+ cols = st.sidebar.columns(2)
318
+ for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
319
+ with cols[idx % 2]:
320
+ st.session_state['unique_counter'] += 1
321
+ unique_id = st.session_state['unique_counter']
322
+ if file.endswith('.png'):
323
+ st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
324
+ else:
325
+ doc = fitz.open(file)
326
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
327
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
328
+ st.image(img, caption=os.path.basename(file), use_container_width=True)
329
+ doc.close()
330
+ checkbox_key = f"asset_{file}_{unique_id}"
331
+ st.session_state['asset_checkboxes'][file] = st.checkbox(
332
+ "Use for SFT/Input",
333
+ value=st.session_state['asset_checkboxes'].get(file, False),
334
+ key=checkbox_key
335
+ )
336
+ mime_type = "image/png" if file.endswith('.png') else "application/pdf"
337
+ st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
338
+ if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
339
+ os.remove(file)
340
+ st.session_state['asset_checkboxes'].pop(file, None)
341
+ st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨")
342
+ st.rerun()
343
+
344
+ update_gallery()
345
+
346
+ # --- Sidebar Logs & History ---
347
+ st.sidebar.subheader("Action Logs 📜")
348
+ with st.sidebar:
349
+ for record in log_records:
350
+ st.write(f"{record.asctime} - {record.levelname} - {record.message}")
351
+ st.sidebar.subheader("History 📜")
352
+ with st.sidebar:
353
+ for entry in st.session_state['history']:
354
+ st.write(entry)
355
+
356
+ # --- Create Tabs ---
357
+ tabs = st.tabs([
358
+ "Camera Snap 📷",
359
+ "Download PDFs 📥",
360
+ "Test OCR 🔍",
361
+ "Build Titan 🌱",
362
+ "Test Image Gen 🎨",
363
+ "PDF Process 📄",
364
+ "Image Process 🖼️",
365
+ "MD Gallery 📚"
366
+ ])
367
+ (tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
368
+
369
+ # === Tab: Camera Snap ===
370
+ with tab_camera:
371
+ st.header("Camera Snap 📷")
372
+ st.subheader("Single Capture")
373
+ cols = st.columns(2)
374
+ with cols[0]:
375
+ cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
376
+ if cam0_img:
377
+ filename = generate_filename("cam0")
378
+ if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
379
+ os.remove(st.session_state['cam0_file'])
380
+ with open(filename, "wb") as f:
381
+ f.write(cam0_img.getvalue())
382
+ st.session_state['cam0_file'] = filename
383
+ entry = f"Snapshot from Cam 0: {filename}"
384
+ if entry not in st.session_state['history']:
385
+ st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
386
+ st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
387
+ logger.info(f"Saved snapshot from Camera 0: {filename}")
388
+ update_gallery()
389
+ with cols[1]:
390
+ cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
391
+ if cam1_img:
392
+ filename = generate_filename("cam1")
393
+ if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
394
+ os.remove(st.session_state['cam1_file'])
395
+ with open(filename, "wb") as f:
396
+ f.write(cam1_img.getvalue())
397
+ st.session_state['cam1_file'] = filename
398
+ entry = f"Snapshot from Cam 1: {filename}"
399
+ if entry not in st.session_state['history']:
400
+ st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
401
+ st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
402
+ logger.info(f"Saved snapshot from Camera 1: {filename}")
403
+ update_gallery()
404
+
405
+ # === Tab: Download PDFs ===
406
+ with tab_download:
407
+ st.header("Download PDFs 📥")
408
+ if st.button("Examples 📚"):
409
+ example_urls = [
410
+ "https://arxiv.org/pdf/2308.03892",
411
+ "https://arxiv.org/pdf/1912.01703",
412
+ "https://arxiv.org/pdf/2408.11039",
413
+ "https://arxiv.org/pdf/2109.10282",
414
+ "https://arxiv.org/pdf/2112.10752",
415
+ "https://arxiv.org/pdf/2308.11236",
416
+ "https://arxiv.org/pdf/1706.03762",
417
+ "https://arxiv.org/pdf/2006.11239",
418
+ "https://arxiv.org/pdf/2305.11207",
419
+ "https://arxiv.org/pdf/2106.09685",
420
+ "https://arxiv.org/pdf/2005.11401",
421
+ "https://arxiv.org/pdf/2106.10504"
422
+ ]
423
+ st.session_state['pdf_urls'] = "\n".join(example_urls)
424
+
425
+ url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
426
+ if st.button("Robo-Download 🤖"):
427
+ urls = url_input.strip().split("\n")
428
+ progress_bar = st.progress(0)
429
+ status_text = st.empty()
430
+ total_urls = len(urls)
431
+ existing_pdfs = get_pdf_files()
432
+ for idx, url in enumerate(urls):
433
+ if url:
434
+ output_path = pdf_url_to_filename(url)
435
+ status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
436
+ if output_path not in existing_pdfs:
437
+ if download_pdf(url, output_path):
438
+ st.session_state['downloaded_pdfs'][url] = output_path
439
+ logger.info(f"Downloaded PDF from {url} to {output_path}")
440
+ entry = f"Downloaded PDF: {output_path}"
441
+ if entry not in st.session_state['history']:
442
+ st.session_state['history'].append(entry)
443
+ st.session_state['asset_checkboxes'][output_path] = True
444
+ else:
445
+ st.error(f"Failed to nab {url} 😿")
446
+ else:
447
+ st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
448
+ st.session_state['downloaded_pdfs'][url] = output_path
449
+ progress_bar.progress((idx + 1) / total_urls)
450
+ status_text.text("Robo-Download complete! 🚀")
451
+ update_gallery()
452
+ mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
453
+ if st.button("Snapshot Selected 📸"):
454
+ selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
455
+ if selected_pdfs:
456
+ for pdf_path in selected_pdfs:
457
+ mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]
458
+ snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
459
+ for snapshot in snapshots:
460
+ st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
461
+ st.session_state['asset_checkboxes'][snapshot] = True
462
+ update_gallery()
463
+ else:
464
+ st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
465
+
466
+ # === Tab: Test OCR ===
467
+ with tab_ocr:
468
+ st.header("Test OCR 🔍")
469
+ all_files = get_gallery_files()
470
+ if all_files:
471
+ if st.button("OCR All Assets 🚀"):
472
+ full_text = "# OCR Results\n\n"
473
+ for file in all_files:
474
+ if file.endswith('.png'):
475
+ image = Image.open(file)
476
+ else:
477
+ doc = fitz.open(file)
478
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
479
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
480
+ doc.close()
481
+ output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
482
+ result = asyncio.run(process_ocr(image, output_file))
483
+ full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
484
+ entry = f"OCR Test: {file} -> {output_file}"
485
+ if entry not in st.session_state['history']:
486
+ st.session_state['history'].append(entry)
487
+ md_output_file = f"full_ocr_{int(time.time())}.md"
488
+ with open(md_output_file, "w") as f:
489
+ f.write(full_text)
490
+ st.success(f"Full OCR saved to {md_output_file}")
491
+ st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
492
+ selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
493
+ if selected_file:
494
+ if selected_file.endswith('.png'):
495
+ image = Image.open(selected_file)
496
+ else:
497
+ doc = fitz.open(selected_file)
498
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
499
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
500
+ doc.close()
501
+ st.image(image, caption="Input Image", use_container_width=True)
502
+ if st.button("Run OCR 🚀", key="ocr_run"):
503
+ output_file = generate_filename("ocr_output", "txt")
504
+ st.session_state['processing']['ocr'] = True
505
+ result = asyncio.run(process_ocr(image, output_file))
506
+ entry = f"OCR Test: {selected_file} -> {output_file}"
507
+ if entry not in st.session_state['history']:
508
+ st.session_state['history'].append(entry)
509
+ st.text_area("OCR Result", result, height=200, key="ocr_result")
510
+ st.success(f"OCR output saved to {output_file}")
511
+ st.session_state['processing']['ocr'] = False
512
+ if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
513
+ doc = fitz.open(selected_file)
514
+ full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
515
+ for i in range(len(doc)):
516
+ pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
517
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
518
+ output_file = generate_filename(f"ocr_page_{i}", "txt")
519
+ result = asyncio.run(process_ocr(image, output_file))
520
+ full_text += f"## Page {i + 1}\n\n{result}\n\n"
521
+ entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
522
+ if entry not in st.session_state['history']:
523
+ st.session_state['history'].append(entry)
524
+ md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
525
+ with open(md_output_file, "w") as f:
526
+ f.write(full_text)
527
+ st.success(f"Full OCR saved to {md_output_file}")
528
+ st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
529
+ else:
530
+ st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
531
+
532
+ # === Tab: Build Titan ===
533
+ with tab_build:
534
+ st.header("Build Titan 🌱")
535
+ model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
536
+ base_model = st.selectbox("Select Tiny Model",
537
+ ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
538
+ ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
539
+ model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
540
+ domain = st.text_input("Target Domain", "general")
541
+ if st.button("Download Model ⬇️"):
542
+ config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
543
+ builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
544
+ builder.load_model(base_model, config)
545
+ builder.save_model(config.model_path)
546
+ st.session_state['builder'] = builder
547
+ st.session_state['model_loaded'] = True
548
+ st.session_state['selected_model_type'] = model_type
549
+ st.session_state['selected_model'] = config.model_path
550
+ entry = f"Built {model_type} model: {model_name}"
551
+ if entry not in st.session_state['history']:
552
+ st.session_state['history'].append(entry)
553
+ st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
554
+ st.rerun()
555
+
556
+ # === Tab: Test Image Gen ===
557
+ with tab_imggen:
558
+ st.header("Test Image Gen 🎨")
559
+ all_files = get_gallery_files()
560
+ if all_files:
561
+ selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
562
+ if selected_file:
563
+ if selected_file.endswith('.png'):
564
+ image = Image.open(selected_file)
565
+ else:
566
+ doc = fitz.open(selected_file)
567
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
568
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
569
+ doc.close()
570
+ st.image(image, caption="Reference Image", use_container_width=True)
571
+ prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
572
+ if st.button("Run Image Gen 🚀", key="gen_run"):
573
+ output_file = generate_filename("gen_output", "png")
574
+ st.session_state['processing']['gen'] = True
575
+ result = asyncio.run(process_image_gen(prompt, output_file))
576
+ entry = f"Image Gen Test: {prompt} -> {output_file}"
577
+ if entry not in st.session_state['history']:
578
+ st.session_state['history'].append(entry)
579
+ st.image(result, caption="Generated Image", use_container_width=True)
580
+ st.success(f"Image saved to {output_file}")
581
+ st.session_state['processing']['gen'] = False
582
+ else:
583
+ st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
584
+ update_gallery()
585
+
586
+ # === Updated Tab: PDF Process ===
587
+ with tab_pdf_process:
588
+ st.header("PDF Process")
589
+ st.subheader("Upload PDFs for GPT-based text extraction")
590
+ gpt_models = ["gpt-4o", "gpt-4o-mini"] # Add more vision-capable models as needed
591
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
592
+ detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
593
+ uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
594
+ view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
595
+ if st.button("Process Uploaded PDFs", key="process_pdfs"):
596
+ combined_text = ""
597
+ for pdf_file in uploaded_pdfs:
598
+ pdf_bytes = pdf_file.read()
599
+ temp_pdf_path = f"temp_{pdf_file.name}"
600
+ with open(temp_pdf_path, "wb") as f:
601
+ f.write(pdf_bytes)
602
+ try:
603
+ doc = fitz.open(temp_pdf_path)
604
+ st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
605
+ if view_mode == "Single Page":
606
+ for i, page in enumerate(doc):
607
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
608
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
609
+ st.image(img, caption=f"{pdf_file.name} Page {i+1}")
610
+ gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
611
+ combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
612
+ else: # Double Page
613
+ pages = list(doc)
614
+ for i in range(0, len(pages), 2):
615
+ if i+1 < len(pages):
616
+ pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
617
+ img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
618
+ pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
619
+ img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
620
+ total_width = img1.width + img2.width
621
+ max_height = max(img1.height, img2.height)
622
+ combined_img = Image.new("RGB", (total_width, max_height))
623
+ combined_img.paste(img1, (0, 0))
624
+ combined_img.paste(img2, (img1.width, 0))
625
+ st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
626
+ gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
627
+ combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
628
+ else:
629
+ pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
630
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
631
+ st.image(img, caption=f"{pdf_file.name} Page {i+1}")
632
+ gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
633
+ combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
634
+ doc.close()
635
+ except Exception as e:
636
+ st.error(f"Error processing {pdf_file.name}: {str(e)}")
637
+ finally:
638
+ os.remove(temp_pdf_path)
639
+ output_filename = generate_filename("processed_pdf", "md")
640
+ with open(output_filename, "w", encoding="utf-8") as f:
641
+ f.write(combined_text)
642
+ st.success(f"PDF processing complete. MD file saved as {output_filename}")
643
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
644
+
645
+ # === Updated Tab: Image Process ===
646
+ with tab_image_process:
647
+ st.header("Image Process")
648
+ st.subheader("Upload Images for GPT-based OCR")
649
+ gpt_models = ["gpt-4o", "gpt-4o-mini"] # Add more vision-capable models as needed
650
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
651
+ detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
652
+ prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
653
+ uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
654
+ if st.button("Process Uploaded Images", key="process_images"):
655
+ combined_text = ""
656
+ for img_file in uploaded_images:
657
+ try:
658
+ img = Image.open(img_file)
659
+ st.image(img, caption=img_file.name)
660
+ gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level)
661
+ combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
662
+ except Exception as e:
663
+ st.error(f"Error processing image {img_file.name}: {str(e)}")
664
+ output_filename = generate_filename("processed_image", "md")
665
+ with open(output_filename, "w", encoding="utf-8") as f:
666
+ f.write(combined_text)
667
+ st.success(f"Image processing complete. MD file saved as {output_filename}")
668
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
669
+
670
+ # === Updated Tab: MD Gallery ===
671
+ with tab_md_gallery:
672
+ st.header("MD Gallery and GPT Processing")
673
+ gpt_models = ["gpt-4o", "gpt-4o-mini"] # Add more vision-capable models as needed
674
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
675
+ md_files = sorted(glob.glob("*.md"))
676
+ if md_files:
677
+ st.subheader("Individual File Processing")
678
+ cols = st.columns(2)
679
+ for idx, md_file in enumerate(md_files):
680
+ with cols[idx % 2]:
681
+ st.write(md_file)
682
+ if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
683
+ try:
684
+ with open(md_file, "r", encoding="utf-8") as f:
685
+ content = f.read()
686
+ prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
687
+ result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model)
688
+ st.markdown(result_text)
689
+ output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
690
+ with open(output_filename, "w", encoding="utf-8") as f:
691
+ f.write(result_text)
692
+ st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
693
+ except Exception as e:
694
+ st.error(f"Error processing {md_file}: {str(e)}")
695
+ st.subheader("Batch Processing")
696
+ st.write("Select MD files to combine and process:")
697
+ selected_md = {}
698
+ for md_file in md_files:
699
+ selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
700
+ batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
701
+ if st.button("Process Selected MD Files", key="process_batch_md"):
702
+ combined_content = ""
703
+ for md_file, selected in selected_md.items():
704
+ if selected:
705
+ try:
706
+ with open(md_file, "r", encoding="utf-8") as f:
707
+ combined_content += f"\n## {md_file}\n" + f.read() + "\n"
708
+ except Exception as e:
709
+ st.error(f"Error reading {md_file}: {str(e)}")
710
+ if combined_content:
711
+ result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model)
712
+ st.markdown(result_text)
713
+ output_filename = generate_filename("batch_processed_md", "md")
714
+ with open(output_filename, "w", encoding="utf-8") as f:
715
+ f.write(result_text)
716
+ st.success(f"Batch processing complete. MD file saved as {output_filename}")
717
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
718
+ else:
719
+ st.warning("No MD files selected.")
720
+ else:
721
+ st.warning("No MD files found.")