Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ import glob
|
|
7 |
import io
|
8 |
import json
|
9 |
import logging
|
|
|
|
|
10 |
import os
|
11 |
import pandas as pd
|
12 |
import pytz
|
@@ -15,24 +17,32 @@ import re
|
|
15 |
import requests
|
16 |
import shutil
|
17 |
import streamlit as st
|
|
|
18 |
import sys
|
|
|
19 |
import time
|
|
|
20 |
import torch
|
21 |
import zipfile
|
22 |
|
23 |
from audio_recorder_streamlit import audio_recorder
|
|
|
|
|
24 |
from contextlib import redirect_stdout
|
25 |
from dataclasses import dataclass
|
26 |
from datetime import datetime
|
27 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
28 |
from io import BytesIO
|
29 |
-
from moviepy import VideoFileClip
|
30 |
from openai import OpenAI
|
31 |
from PIL import Image
|
32 |
from PyPDF2 import PdfReader
|
33 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
34 |
from typing import Optional
|
35 |
-
|
|
|
36 |
|
37 |
# Initialize OpenAI client
|
38 |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
@@ -60,13 +70,18 @@ st.set_page_config(
|
|
60 |
)
|
61 |
|
62 |
# Session state initialization
|
63 |
-
for key in ['history', '
|
64 |
-
st.session_state.setdefault(key, [] if key in ['history', 'messages'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else
|
|
|
|
|
65 |
st.session_state.setdefault('selected_model_type', "Causal LM")
|
66 |
st.session_state.setdefault('selected_model', "None")
|
67 |
st.session_state.setdefault('gallery_size', 2)
|
68 |
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty())
|
|
|
|
|
69 |
|
|
|
70 |
@dataclass
|
71 |
class ModelConfig:
|
72 |
name: str
|
@@ -93,6 +108,11 @@ class ModelBuilder:
|
|
93 |
self.config = None
|
94 |
self.model = None
|
95 |
self.tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
96 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
97 |
with st.spinner(f"Loading {model_path}... ⏳"):
|
98 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
@@ -102,7 +122,7 @@ class ModelBuilder:
|
|
102 |
if config:
|
103 |
self.config = config
|
104 |
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
105 |
-
st.success(f"Model loaded! 🎉")
|
106 |
return self
|
107 |
def save_model(self, path: str):
|
108 |
with st.spinner("Saving model... 💾"):
|
@@ -130,10 +150,11 @@ class DiffusionBuilder:
|
|
130 |
def generate(self, prompt: str):
|
131 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
132 |
|
|
|
133 |
def generate_filename(prompt, ext="png"):
|
134 |
central = pytz.timezone('US/Central')
|
135 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
136 |
-
safe_prompt = re.sub(r'[<>:"
|
137 |
return f"{safe_date_time}_{safe_prompt}.{ext}"
|
138 |
|
139 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
@@ -162,6 +183,7 @@ def download_pdf(url, output_path):
|
|
162 |
logger.error(f"Failed to download {url}: {e}")
|
163 |
return False
|
164 |
|
|
|
165 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
166 |
start_time = time.time()
|
167 |
status = st.empty()
|
@@ -248,18 +270,24 @@ def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
|
248 |
except Exception as e:
|
249 |
return f"Error processing text with GPT: {str(e)}"
|
250 |
|
251 |
-
def process_audio(audio_input,
|
252 |
with open(audio_input, "rb") as file:
|
253 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
def process_video(video_path, prompt):
|
258 |
base64Frames, audio_path = process_video_frames(video_path)
|
259 |
with open(video_path, "rb") as file:
|
260 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
261 |
messages = [{"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{prompt}"}]}]
|
262 |
-
response = client.chat.completions.create(model="gpt-4o-
|
263 |
return response.choices[0].message.content
|
264 |
|
265 |
def process_video_frames(video_path, seconds_per_frame=2):
|
@@ -300,13 +328,147 @@ def execute_code(code):
|
|
300 |
finally:
|
301 |
buffer.close()
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
# Sidebar
|
304 |
st.sidebar.subheader("Gallery Settings")
|
305 |
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
# Tabs
|
308 |
-
tabs = st.tabs(["Camera 📷", "Download 📥", "OCR 🔍", "Build 🌱", "Image Gen 🎨", "PDF 📄", "Image 🖼️", "Audio 🎵", "Video 🎥", "Code 🧑💻", "Gallery 📚"])
|
309 |
-
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery) = tabs
|
310 |
|
311 |
with tab_camera:
|
312 |
st.header("Camera Snap 📷")
|
@@ -324,8 +486,11 @@ with tab_camera:
|
|
324 |
|
325 |
with tab_download:
|
326 |
st.header("Download PDFs 📥")
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
329 |
urls = url_input.strip().split("\n")
|
330 |
progress_bar = st.progress(0)
|
331 |
for idx, url in enumerate(urls):
|
@@ -464,6 +629,17 @@ with tab_gallery:
|
|
464 |
elif file.endswith('.mp4'):
|
465 |
st.video(file)
|
466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
467 |
# Update gallery in sidebar
|
468 |
def update_gallery():
|
469 |
container = st.session_state['asset_gallery_container']
|
@@ -497,4 +673,18 @@ for record in log_records:
|
|
497 |
st.sidebar.subheader("History 📜")
|
498 |
for entry in st.session_state.get("history", []):
|
499 |
if entry:
|
500 |
-
st.sidebar.write(entry)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import io
|
8 |
import json
|
9 |
import logging
|
10 |
+
import math
|
11 |
+
import mistune
|
12 |
import os
|
13 |
import pandas as pd
|
14 |
import pytz
|
|
|
17 |
import requests
|
18 |
import shutil
|
19 |
import streamlit as st
|
20 |
+
import streamlit.components.v1 as components
|
21 |
import sys
|
22 |
+
import textract
|
23 |
import time
|
24 |
+
import tiktoken
|
25 |
import torch
|
26 |
import zipfile
|
27 |
|
28 |
from audio_recorder_streamlit import audio_recorder
|
29 |
+
from bs4 import BeautifulSoup
|
30 |
+
from collections import deque
|
31 |
from contextlib import redirect_stdout
|
32 |
from dataclasses import dataclass
|
33 |
from datetime import datetime
|
34 |
from diffusers import StableDiffusionPipeline
|
35 |
+
from gradio_client import Client, handle_file
|
36 |
+
from huggingface_hub import InferenceClient
|
37 |
from io import BytesIO
|
38 |
+
from moviepy import VideoFileClip
|
39 |
from openai import OpenAI
|
40 |
from PIL import Image
|
41 |
from PyPDF2 import PdfReader
|
42 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
43 |
from typing import Optional
|
44 |
+
from urllib.parse import quote
|
45 |
+
from xml.etree import ElementTree as ET
|
46 |
|
47 |
# Initialize OpenAI client
|
48 |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
|
|
70 |
)
|
71 |
|
72 |
# Session state initialization
|
73 |
+
for key in ['history', 'messages', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'search_queries']:
|
74 |
+
st.session_state.setdefault(key, [] if key in ['history', 'messages', 'search_queries'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else 0 if key == 'unique_counter' else None)
|
75 |
+
st.session_state.setdefault('builder', None)
|
76 |
+
st.session_state.setdefault('model_loaded', False)
|
77 |
st.session_state.setdefault('selected_model_type', "Causal LM")
|
78 |
st.session_state.setdefault('selected_model', "None")
|
79 |
st.session_state.setdefault('gallery_size', 2)
|
80 |
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty())
|
81 |
+
st.session_state.setdefault('cam0_file', None)
|
82 |
+
st.session_state.setdefault('cam1_file', None)
|
83 |
|
84 |
+
# Model configurations
|
85 |
@dataclass
|
86 |
class ModelConfig:
|
87 |
name: str
|
|
|
108 |
self.config = None
|
109 |
self.model = None
|
110 |
self.tokenizer = None
|
111 |
+
self.jokes = [
|
112 |
+
"Why did the AI go to therapy? Too many layers to unpack! 😂",
|
113 |
+
"Training complete! Time for a binary coffee break. ☕",
|
114 |
+
"I told my neural network a joke; it couldn't stop dropping bits! 🤖"
|
115 |
+
]
|
116 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
117 |
with st.spinner(f"Loading {model_path}... ⏳"):
|
118 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
|
122 |
if config:
|
123 |
self.config = config
|
124 |
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
125 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
126 |
return self
|
127 |
def save_model(self, path: str):
|
128 |
with st.spinner("Saving model... 💾"):
|
|
|
150 |
def generate(self, prompt: str):
|
151 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
152 |
|
153 |
+
# Utility functions
|
154 |
def generate_filename(prompt, ext="png"):
|
155 |
central = pytz.timezone('US/Central')
|
156 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
157 |
+
safe_prompt = re.sub(r'[<>:"/\\|?*\n]', '_', prompt)[:240]
|
158 |
return f"{safe_date_time}_{safe_prompt}.{ext}"
|
159 |
|
160 |
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
|
|
183 |
logger.error(f"Failed to download {url}: {e}")
|
184 |
return False
|
185 |
|
186 |
+
# Processing functions
|
187 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
188 |
start_time = time.time()
|
189 |
status = st.empty()
|
|
|
270 |
except Exception as e:
|
271 |
return f"Error processing text with GPT: {str(e)}"
|
272 |
|
273 |
+
def process_audio(audio_input, text_input=''):
|
274 |
with open(audio_input, "rb") as file:
|
275 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
276 |
+
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
277 |
+
completion = client.chat.completions.create(model="gpt-4o-2024-05-13", messages=[{"role": "user", "content": f"{text_input}\n\n{transcription.text}"}])
|
278 |
+
return_text = completion.choices[0].message.content
|
279 |
+
filename = generate_filename(transcription.text, "md")
|
280 |
+
with open(filename, "w", encoding="utf-8") as f:
|
281 |
+
f.write(text_input + "\n\n" + return_text)
|
282 |
+
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
283 |
+
return transcription.text, return_text
|
284 |
|
285 |
def process_video(video_path, prompt):
|
286 |
base64Frames, audio_path = process_video_frames(video_path)
|
287 |
with open(video_path, "rb") as file:
|
288 |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
|
289 |
messages = [{"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{prompt}"}]}]
|
290 |
+
response = client.chat.completions.create(model="gpt-4o-2024-05-13", messages=messages)
|
291 |
return response.choices[0].message.content
|
292 |
|
293 |
def process_video_frames(video_path, seconds_per_frame=2):
|
|
|
328 |
finally:
|
329 |
buffer.close()
|
330 |
|
331 |
+
def extract_python_code(markdown_text):
|
332 |
+
pattern = r"```python\s*(.*?)\s*```"
|
333 |
+
matches = re.findall(pattern, markdown_text, re.DOTALL)
|
334 |
+
return matches
|
335 |
+
|
336 |
+
# Speech synthesis
|
337 |
+
def SpeechSynthesis(result):
|
338 |
+
documentHTML5 = f'''
|
339 |
+
<!DOCTYPE html>
|
340 |
+
<html>
|
341 |
+
<head>
|
342 |
+
<title>Read It Aloud</title>
|
343 |
+
<script type="text/javascript">
|
344 |
+
function readAloud() {{
|
345 |
+
const text = document.getElementById("textArea").value;
|
346 |
+
const speech = new SpeechSynthesisUtterance(text);
|
347 |
+
window.speechSynthesis.speak(speech);
|
348 |
+
}}
|
349 |
+
</script>
|
350 |
+
</head>
|
351 |
+
<body>
|
352 |
+
<h1>🔊 Read It Aloud</h1>
|
353 |
+
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
|
354 |
+
<br>
|
355 |
+
<button onclick="readAloud()">🔊 Read Aloud</button>
|
356 |
+
</body>
|
357 |
+
</html>
|
358 |
+
'''
|
359 |
+
components.html(documentHTML5, width=1280, height=300)
|
360 |
+
|
361 |
+
# ArXiv search
|
362 |
+
def search_arxiv(query):
|
363 |
+
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
|
364 |
+
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
365 |
+
response1 = client.predict(message="Hello!!", llm_results_use=5, database_choice="Semantic Search", llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", api_name="/update_with_rag_md")
|
366 |
+
Question = f'### 🔎 {query}\r\n'
|
367 |
+
References = response1[0]
|
368 |
+
References2 = response1[1]
|
369 |
+
filename = generate_filename(query, "md")
|
370 |
+
with open(filename, "w", encoding="utf-8") as f:
|
371 |
+
f.write(Question + References + References2)
|
372 |
+
st.session_state.messages.append({"role": "assistant", "content": References + References2})
|
373 |
+
response2 = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
|
374 |
+
if len(response2) > 10:
|
375 |
+
Answer = response2
|
376 |
+
SpeechSynthesis(Answer)
|
377 |
+
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + References2
|
378 |
+
return results
|
379 |
+
return References + References2
|
380 |
+
|
381 |
+
# Glossary data
|
382 |
+
roleplaying_glossary = {
|
383 |
+
"🤖 AI Concepts": {
|
384 |
+
"MoE (Mixture of Experts) 🧠": [
|
385 |
+
"As a leading AI health researcher, provide an overview of MoE, MAS, memory, and mirroring in healthcare applications.",
|
386 |
+
"Explain how MoE and MAS can be leveraged to create AGI and AMI systems for healthcare, as an AI architect."
|
387 |
+
],
|
388 |
+
"Multi Agent Systems (MAS) 🤝": [
|
389 |
+
"As a renowned MAS researcher, describe the key characteristics of distributed, autonomous, and cooperative MAS.",
|
390 |
+
"Discuss how MAS is applied in robotics, simulations, and decentralized problem-solving, as an AI engineer."
|
391 |
+
]
|
392 |
+
},
|
393 |
+
"🛠️ AI Tools & Platforms": {
|
394 |
+
"ChatDev 💬": [
|
395 |
+
"As a chatbot developer, ask about the features and capabilities ChatDev offers for building conversational AI.",
|
396 |
+
"Inquire about the pre-built assets, integrations, and multi-platform support in ChatDev, as a product manager."
|
397 |
+
]
|
398 |
+
}
|
399 |
+
}
|
400 |
+
|
401 |
+
def display_glossary_grid(roleplaying_glossary):
|
402 |
+
search_urls = {
|
403 |
+
"🚀🌌ArXiv": lambda k: f"/?q={quote(k)}",
|
404 |
+
"📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
|
405 |
+
"🔍": lambda k: f"https://www.google.com/search?q={quote(k)}"
|
406 |
+
}
|
407 |
+
for category, details in roleplaying_glossary.items():
|
408 |
+
st.write(f"### {category}")
|
409 |
+
cols = st.columns(len(details))
|
410 |
+
for idx, (game, terms) in enumerate(details.items()):
|
411 |
+
with cols[idx]:
|
412 |
+
st.markdown(f"#### {game}")
|
413 |
+
for term in terms:
|
414 |
+
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
|
415 |
+
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True)
|
416 |
+
|
417 |
+
# File operations
|
418 |
+
def create_zip_of_files(files):
|
419 |
+
zip_name = "assets.zip"
|
420 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
421 |
+
for file in files:
|
422 |
+
zipf.write(file)
|
423 |
+
return zip_name
|
424 |
+
|
425 |
+
def get_zip_download_link(zip_file):
|
426 |
+
with open(zip_file, 'rb') as f:
|
427 |
+
data = f.read()
|
428 |
+
b64 = base64.b64encode(data).decode()
|
429 |
+
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
430 |
+
|
431 |
# Sidebar
|
432 |
st.sidebar.subheader("Gallery Settings")
|
433 |
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
|
434 |
|
435 |
+
# File sidebar
|
436 |
+
def FileSidebar():
|
437 |
+
all_files = glob.glob("*.md")
|
438 |
+
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
|
439 |
+
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
|
440 |
+
Files1, Files2 = st.sidebar.columns(2)
|
441 |
+
with Files1:
|
442 |
+
if st.button("🗑 Delete All"):
|
443 |
+
for file in all_files:
|
444 |
+
os.remove(file)
|
445 |
+
st.rerun()
|
446 |
+
with Files2:
|
447 |
+
if st.button("⬇️ Download"):
|
448 |
+
zip_file = create_zip_of_files(all_files)
|
449 |
+
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
|
450 |
+
for file in all_files:
|
451 |
+
col1, col2, col3, col4 = st.sidebar.columns([1, 6, 1, 1])
|
452 |
+
with col1:
|
453 |
+
if st.button("🌐", key=f"md_{file}"):
|
454 |
+
with open(file, "r", encoding='utf-8') as f:
|
455 |
+
st.markdown(f.read())
|
456 |
+
with col2:
|
457 |
+
st.markdown(get_download_link(file, "text/markdown", file))
|
458 |
+
with col3:
|
459 |
+
if st.button("📂", key=f"open_{file}"):
|
460 |
+
with open(file, "r", encoding='utf-8') as f:
|
461 |
+
st.text_area("File Contents", f.read(), height=300)
|
462 |
+
with col4:
|
463 |
+
if st.button("🗑", key=f"delete_{file}"):
|
464 |
+
os.remove(file)
|
465 |
+
st.rerun()
|
466 |
+
|
467 |
+
FileSidebar()
|
468 |
+
|
469 |
# Tabs
|
470 |
+
tabs = st.tabs(["Camera 📷", "Download 📥", "OCR 🔍", "Build 🌱", "Image Gen 🎨", "PDF 📄", "Image 🖼️", "Audio 🎵", "Video 🎥", "Code 🧑💻", "Gallery 📚", "Search 🔎", "Glossary 📖"])
|
471 |
+
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery, tab_search, tab_glossary) = tabs
|
472 |
|
473 |
with tab_camera:
|
474 |
st.header("Camera Snap 📷")
|
|
|
486 |
|
487 |
with tab_download:
|
488 |
st.header("Download PDFs 📥")
|
489 |
+
if st.button("Examples 📚"):
|
490 |
+
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703"]
|
491 |
+
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
492 |
+
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
493 |
+
if st.button("Robo-Download 🤖"):
|
494 |
urls = url_input.strip().split("\n")
|
495 |
progress_bar = st.progress(0)
|
496 |
for idx, url in enumerate(urls):
|
|
|
629 |
elif file.endswith('.mp4'):
|
630 |
st.video(file)
|
631 |
|
632 |
+
with tab_search:
|
633 |
+
st.header("ArXiv Search 🔎")
|
634 |
+
query = st.text_input("Search ArXiv", "")
|
635 |
+
if query:
|
636 |
+
result = search_arxiv(query)
|
637 |
+
st.markdown(result)
|
638 |
+
|
639 |
+
with tab_glossary:
|
640 |
+
st.header("Glossary 📖")
|
641 |
+
display_glossary_grid(roleplaying_glossary)
|
642 |
+
|
643 |
# Update gallery in sidebar
|
644 |
def update_gallery():
|
645 |
container = st.session_state['asset_gallery_container']
|
|
|
673 |
st.sidebar.subheader("History 📜")
|
674 |
for entry in st.session_state.get("history", []):
|
675 |
if entry:
|
676 |
+
st.sidebar.write(entry)
|
677 |
+
|
678 |
+
# Chatbot
|
679 |
+
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
|
680 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
681 |
+
with st.chat_message("user"):
|
682 |
+
st.markdown(prompt)
|
683 |
+
with st.chat_message("assistant"):
|
684 |
+
completion = client.chat.completions.create(model="gpt-4o-2024-05-13", messages=st.session_state.messages, stream=True)
|
685 |
+
response = ""
|
686 |
+
for chunk in completion:
|
687 |
+
if chunk.choices[0].delta.content:
|
688 |
+
response += chunk.choices[0].delta.content
|
689 |
+
st.write(response)
|
690 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|