awacke1 commited on
Commit
d6f4b6a
·
verified ·
1 Parent(s): 2bf5e23

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +1031 -0
app.py ADDED
@@ -0,0 +1,1031 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import glob
4
+ import base64
5
+ import time
6
+ import shutil
7
+ import streamlit as st
8
+ import pandas as pd
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoProcessor, Qwen2VLForConditionalGeneration, TrOCRProcessor, VisionEncoderDecoderModel
13
+ from diffusers import StableDiffusionPipeline
14
+ from torch.utils.data import Dataset, DataLoader
15
+ import csv
16
+ import fitz # PyMuPDF
17
+ import requests
18
+ from PIL import Image
19
+ import cv2
20
+ import numpy as np
21
+ import logging
22
+ import asyncio
23
+ import aiofiles
24
+ from io import BytesIO
25
+ from dataclasses import dataclass
26
+ from typing import Optional, Tuple
27
+ import zipfile
28
+ import math
29
+ import random
30
+ import re
31
+ from datetime import datetime
32
+ import pytz
33
+
34
+ # Logging setup with custom buffer
35
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
36
+ logger = logging.getLogger(__name__)
37
+ log_records = []
38
+
39
+ class LogCaptureHandler(logging.Handler):
40
+ def emit(self, record):
41
+ log_records.append(record)
42
+
43
+ logger.addHandler(LogCaptureHandler())
44
+
45
+ # Page Configuration
46
+ st.set_page_config(
47
+ page_title="AI Vision & SFT Titans 🚀",
48
+ page_icon="🤖",
49
+ layout="wide",
50
+ initial_sidebar_state="expanded",
51
+ menu_items={
52
+ 'Get Help': 'https://huggingface.co/awacke1',
53
+ 'Report a Bug': 'https://huggingface.co/spaces/awacke1',
54
+ 'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌"
55
+ }
56
+ )
57
+
58
+ # Initialize st.session_state
59
+ if 'history' not in st.session_state:
60
+ st.session_state['history'] = [] # Flat list for history
61
+ if 'builder' not in st.session_state:
62
+ st.session_state['builder'] = None
63
+ if 'model_loaded' not in st.session_state:
64
+ st.session_state['model_loaded'] = False
65
+ if 'processing' not in st.session_state:
66
+ st.session_state['processing'] = {}
67
+ if 'pdf_checkboxes' not in st.session_state:
68
+ st.session_state['pdf_checkboxes'] = {}
69
+ if 'downloaded_pdfs' not in st.session_state:
70
+ st.session_state['downloaded_pdfs'] = {}
71
+ if 'captured_images' not in st.session_state:
72
+ st.session_state['captured_images'] = []
73
+
74
+ # Model Configuration Classes
75
+ @dataclass
76
+ class ModelConfig:
77
+ name: str
78
+ base_model: str
79
+ size: str
80
+ domain: Optional[str] = None
81
+ model_type: str = "causal_lm"
82
+ @property
83
+ def model_path(self):
84
+ return f"models/{self.name}"
85
+
86
+ @dataclass
87
+ class DiffusionConfig:
88
+ name: str
89
+ base_model: str
90
+ size: str
91
+ domain: Optional[str] = None # Fixed to include domain
92
+ @property
93
+ def model_path(self):
94
+ return f"diffusion_models/{self.name}"
95
+
96
+ # Datasets
97
+ class SFTDataset(Dataset):
98
+ def __init__(self, data, tokenizer, max_length=128):
99
+ self.data = data
100
+ self.tokenizer = tokenizer
101
+ self.max_length = max_length
102
+ def __len__(self):
103
+ return len(self.data)
104
+ def __getitem__(self, idx):
105
+ prompt = self.data[idx]["prompt"]
106
+ response = self.data[idx]["response"]
107
+ full_text = f"{prompt} {response}"
108
+ full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
109
+ prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
110
+ input_ids = full_encoding["input_ids"].squeeze()
111
+ attention_mask = full_encoding["attention_mask"].squeeze()
112
+ labels = input_ids.clone()
113
+ prompt_len = prompt_encoding["input_ids"].shape[1]
114
+ if prompt_len < self.max_length:
115
+ labels[:prompt_len] = -100
116
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
117
+
118
+ class DiffusionDataset(Dataset):
119
+ def __init__(self, images, texts):
120
+ self.images = images
121
+ self.texts = texts
122
+ def __len__(self):
123
+ return len(self.images)
124
+ def __getitem__(self, idx):
125
+ return {"image": self.images[idx], "text": self.texts[idx]}
126
+
127
+ class TinyDiffusionDataset(Dataset):
128
+ def __init__(self, images):
129
+ self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images]
130
+ def __len__(self):
131
+ return len(self.images)
132
+ def __getitem__(self, idx):
133
+ return self.images[idx]
134
+
135
+ # Custom Tiny Diffusion Model
136
+ class TinyUNet(nn.Module):
137
+ def __init__(self, in_channels=3, out_channels=3):
138
+ super(TinyUNet, self).__init__()
139
+ self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1)
140
+ self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2)
141
+ self.mid = nn.Conv2d(64, 128, 3, padding=1)
142
+ self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1)
143
+ self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1)
144
+ self.out = nn.Conv2d(32, out_channels, 3, padding=1)
145
+ self.time_embed = nn.Linear(1, 64)
146
+
147
+ def forward(self, x, t):
148
+ t_embed = F.relu(self.time_embed(t.unsqueeze(-1)))
149
+ t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1)
150
+
151
+ x1 = F.relu(self.down1(x))
152
+ x2 = F.relu(self.down2(x1))
153
+ x_mid = F.relu(self.mid(x2)) + t_embed
154
+ x_up1 = F.relu(self.up1(x_mid))
155
+ x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1)))
156
+ return self.out(x_up2)
157
+
158
+ class TinyDiffusion:
159
+ def __init__(self, model, timesteps=100):
160
+ self.model = model
161
+ self.timesteps = timesteps
162
+ self.beta = torch.linspace(0.0001, 0.02, timesteps)
163
+ self.alpha = 1 - self.beta
164
+ self.alpha_cumprod = torch.cumprod(self.alpha, dim=0)
165
+
166
+ def train(self, images, epochs=50):
167
+ dataset = TinyDiffusionDataset(images)
168
+ dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
169
+ optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
170
+ device = torch.device("cpu")
171
+ self.model.to(device)
172
+ for epoch in range(epochs):
173
+ total_loss = 0
174
+ for x in dataloader:
175
+ x = x.to(device)
176
+ t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float()
177
+ noise = torch.randn_like(x)
178
+ alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1)
179
+ x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise
180
+ pred_noise = self.model(x_noisy, t)
181
+ loss = F.mse_loss(pred_noise, noise)
182
+ optimizer.zero_grad()
183
+ loss.backward()
184
+ optimizer.step()
185
+ total_loss += loss.item()
186
+ logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}")
187
+ return self
188
+
189
+ def generate(self, size=(64, 64), steps=100):
190
+ device = torch.device("cpu")
191
+ x = torch.randn(1, 3, size[0], size[1], device=device)
192
+ for t in reversed(range(steps)):
193
+ t_tensor = torch.full((1,), t, device=device, dtype=torch.float32)
194
+ alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1)
195
+ pred_noise = self.model(x, t_tensor)
196
+ x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t])
197
+ if t > 0:
198
+ x += torch.sqrt(self.beta[t]) * torch.randn_like(x)
199
+ x = torch.clamp(x * 255, 0, 255).byte()
200
+ return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy())
201
+
202
+ def upscale(self, image, scale_factor=2):
203
+ img_tensor = torch.tensor(np.array(image.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0
204
+ upscaled = F.interpolate(img_tensor, scale_factor=scale_factor, mode='bilinear', align_corners=False)
205
+ upscaled = torch.clamp(upscaled * 255, 0, 255).byte()
206
+ return Image.fromarray(upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy())
207
+
208
+ # Model Builders
209
+ class ModelBuilder:
210
+ def __init__(self):
211
+ self.config = None
212
+ self.model = None
213
+ self.tokenizer = None
214
+ self.sft_data = None
215
+ self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
216
+ def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
217
+ with st.spinner(f"Loading {model_path}... ⏳"):
218
+ self.model = AutoModelForCausalLM.from_pretrained(model_path)
219
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
220
+ if self.tokenizer.pad_token is None:
221
+ self.tokenizer.pad_token = self.tokenizer.eos_token
222
+ if config:
223
+ self.config = config
224
+ self.model.to("cuda" if torch.cuda.is_available() else "cpu")
225
+ st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
226
+ return self
227
+ def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
228
+ self.sft_data = []
229
+ with open(csv_path, "r") as f:
230
+ reader = csv.DictReader(f)
231
+ for row in reader:
232
+ self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
233
+ dataset = SFTDataset(self.sft_data, self.tokenizer)
234
+ dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
235
+ optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
236
+ self.model.train()
237
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
238
+ self.model.to(device)
239
+ for epoch in range(epochs):
240
+ with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
241
+ total_loss = 0
242
+ for batch in dataloader:
243
+ optimizer.zero_grad()
244
+ input_ids = batch["input_ids"].to(device)
245
+ attention_mask = batch["attention_mask"].to(device)
246
+ labels = batch["labels"].to(device)
247
+ outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
248
+ loss = outputs.loss
249
+ loss.backward()
250
+ optimizer.step()
251
+ total_loss += loss.item()
252
+ st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
253
+ st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
254
+ return self
255
+ def save_model(self, path: str):
256
+ with st.spinner("Saving model... 💾"):
257
+ os.makedirs(os.path.dirname(path), exist_ok=True)
258
+ self.model.save_pretrained(path)
259
+ self.tokenizer.save_pretrained(path)
260
+ st.success(f"Model saved at {path}! ✅")
261
+ def evaluate(self, prompt: str, status_container=None):
262
+ self.model.eval()
263
+ if status_container:
264
+ status_container.write("Preparing to evaluate... 🧠")
265
+ try:
266
+ with torch.no_grad():
267
+ inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
268
+ outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
269
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
270
+ except Exception as e:
271
+ if status_container:
272
+ status_container.error(f"Oops! Something broke: {str(e)} 💥")
273
+ return f"Error: {str(e)}"
274
+
275
+ class DiffusionBuilder:
276
+ def __init__(self):
277
+ self.config = None
278
+ self.pipeline = None
279
+ def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
280
+ with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
281
+ self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
282
+ if config:
283
+ self.config = config
284
+ st.success(f"Diffusion model loaded! 🎨")
285
+ return self
286
+ def fine_tune_sft(self, images, texts, epochs=3):
287
+ dataset = DiffusionDataset(images, texts)
288
+ dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
289
+ optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
290
+ self.pipeline.unet.train()
291
+ for epoch in range(epochs):
292
+ with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
293
+ total_loss = 0
294
+ for batch in dataloader:
295
+ optimizer.zero_grad()
296
+ image = batch["image"][0].to(self.pipeline.device)
297
+ text = batch["text"][0]
298
+ latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
299
+ noise = torch.randn_like(latents)
300
+ timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
301
+ noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
302
+ text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
303
+ pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
304
+ loss = torch.nn.functional.mse_loss(pred_noise, noise)
305
+ loss.backward()
306
+ optimizer.step()
307
+ total_loss += loss.item()
308
+ st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
309
+ st.success("Diffusion SFT Fine-tuning completed! 🎨")
310
+ return self
311
+ def save_model(self, path: str):
312
+ with st.spinner("Saving diffusion model... 💾"):
313
+ os.makedirs(os.path.dirname(path), exist_ok=True)
314
+ self.pipeline.save_pretrained(path)
315
+ st.success(f"Diffusion model saved at {path}! ✅")
316
+ def generate(self, prompt: str):
317
+ return self.pipeline(prompt, num_inference_steps=20).images[0]
318
+
319
+ # Utility Functions
320
+ def generate_filename(sequence, ext="png"):
321
+ central = pytz.timezone('US/Central')
322
+ timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
323
+ return f"{sequence}_{timestamp}.{ext}"
324
+
325
+ def pdf_url_to_filename(url):
326
+ safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
327
+ return f"{safe_name}.pdf"
328
+
329
+ def get_download_link(file_path, mime_type="application/pdf", label="Download"):
330
+ with open(file_path, 'rb') as f:
331
+ data = f.read()
332
+ b64 = base64.b64encode(data).decode()
333
+ return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
334
+
335
+ def zip_directory(directory_path, zip_path):
336
+ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
337
+ for root, _, files in os.walk(directory_path):
338
+ for file in files:
339
+ zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
340
+
341
+ def get_model_files(model_type="causal_lm"):
342
+ path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
343
+ return [d for d in glob.glob(path) if os.path.isdir(d)]
344
+
345
+ def get_gallery_files(file_types=["png", "txt"]):
346
+ return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
347
+
348
+ def get_pdf_files():
349
+ return sorted(glob.glob("*.pdf"))
350
+
351
+ def download_pdf(url, output_path):
352
+ try:
353
+ response = requests.get(url, stream=True, timeout=10)
354
+ if response.status_code == 200:
355
+ with open(output_path, "wb") as f:
356
+ for chunk in response.iter_content(chunk_size=8192):
357
+ f.write(chunk)
358
+ return True
359
+ except requests.RequestException as e:
360
+ logger.error(f"Failed to download {url}: {e}")
361
+ return False
362
+
363
+ # Model Loaders for New App Features
364
+ def load_ocr_qwen2vl():
365
+ model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
366
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
367
+ model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
368
+ return processor, model
369
+
370
+ def load_ocr_trocr():
371
+ model_id = "microsoft/trocr-small-handwritten"
372
+ processor = TrOCRProcessor.from_pretrained(model_id)
373
+ model = VisionEncoderDecoderModel.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu").eval()
374
+ return processor, model
375
+
376
+ def load_image_gen():
377
+ model_id = "OFA-Sys/small-stable-diffusion-v0"
378
+ pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu")
379
+ return pipeline
380
+
381
+ def load_line_drawer():
382
+ def edge_detection(image):
383
+ img_np = np.array(image.convert("RGB"))
384
+ gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
385
+ edges = cv2.Canny(gray, 100, 200)
386
+ return Image.fromarray(edges)
387
+ return edge_detection
388
+
389
+ # Async Processing Functions
390
+ async def process_pdf_snapshot(pdf_path, mode="single"):
391
+ start_time = time.time()
392
+ status = st.empty()
393
+ status.text(f"Processing PDF Snapshot ({mode})... (0s)")
394
+ try:
395
+ doc = fitz.open(pdf_path)
396
+ output_files = []
397
+ if mode == "single":
398
+ page = doc[0]
399
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
400
+ output_file = generate_filename("single", "png")
401
+ pix.save(output_file)
402
+ output_files.append(output_file)
403
+ elif mode == "twopage":
404
+ for i in range(min(2, len(doc))):
405
+ page = doc[i]
406
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
407
+ output_file = generate_filename(f"twopage_{i}", "png")
408
+ pix.save(output_file)
409
+ output_files.append(output_file)
410
+ elif mode == "allthumbs":
411
+ for i in range(len(doc)):
412
+ page = doc[i]
413
+ pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
414
+ output_file = generate_filename(f"thumb_{i}", "png")
415
+ pix.save(output_file)
416
+ output_files.append(output_file)
417
+ doc.close()
418
+ elapsed = int(time.time() - start_time)
419
+ status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
420
+ update_gallery()
421
+ return output_files
422
+ except Exception as e:
423
+ status.error(f"Failed to process PDF: {str(e)}")
424
+ return []
425
+
426
+ async def process_ocr(image, prompt, model_name, output_file):
427
+ start_time = time.time()
428
+ status = st.empty()
429
+ status.text(f"Processing {model_name} OCR... (0s)")
430
+ if model_name == "Qwen2-VL-OCR-2B":
431
+ processor, model = load_ocr_qwen2vl()
432
+ messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
433
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
434
+ inputs = processor(text=[text], images=[image], return_tensors="pt", padding=True).to("cpu")
435
+ outputs = model.generate(**inputs, max_new_tokens=1024)
436
+ result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
437
+ elif model_name == "TrOCR-Small":
438
+ processor, model = load_ocr_trocr()
439
+ pixel_values = processor(images=image, return_tensors="pt").pixel_values.to("cpu")
440
+ outputs = model.generate(pixel_values)
441
+ result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
442
+ else: # GOT-OCR2_0 (original from Backup 6)
443
+ tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
444
+ model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
445
+ result = model.chat(tokenizer, image, ocr_type='ocr')
446
+ elapsed = int(time.time() - start_time)
447
+ status.text(f"{model_name} OCR completed in {elapsed}s!")
448
+ async with aiofiles.open(output_file, "w") as f:
449
+ await f.write(result)
450
+ st.session_state['captured_images'].append(output_file)
451
+ update_gallery()
452
+ return result
453
+
454
+ async def process_image_gen(prompt, output_file):
455
+ start_time = time.time()
456
+ status = st.empty()
457
+ status.text("Processing Image Gen... (0s)")
458
+ pipeline = load_image_gen()
459
+ gen_image = pipeline(prompt, num_inference_steps=20).images[0]
460
+ elapsed = int(time.time() - start_time)
461
+ status.text(f"Image Gen completed in {elapsed}s!")
462
+ gen_image.save(output_file)
463
+ st.session_state['captured_images'].append(output_file)
464
+ update_gallery()
465
+ return gen_image
466
+
467
+ async def process_line_drawing(image, output_file):
468
+ start_time = time.time()
469
+ status = st.empty()
470
+ status.text("Processing Line Drawing... (0s)")
471
+ edge_fn = load_line_drawer()
472
+ line_drawing = edge_fn(image)
473
+ elapsed = int(time.time() - start_time)
474
+ status.text(f"Line Drawing completed in {elapsed}s!")
475
+ line_drawing.save(output_file)
476
+ st.session_state['captured_images'].append(output_file)
477
+ update_gallery()
478
+ return line_drawing
479
+
480
+ # Mock Search Tool for RAG
481
+ def mock_search(query: str) -> str:
482
+ if "superhero" in query.lower():
483
+ return "Latest trends: Gold-plated Batman statues, VR superhero battles."
484
+ return "No relevant results found."
485
+
486
+ def mock_duckduckgo_search(query: str) -> str:
487
+ if "superhero party trends" in query.lower():
488
+ return """
489
+ Latest trends for 2025:
490
+ - Luxury decorations: Gold-plated Batman statues, holographic Avengers displays.
491
+ - Entertainment: Live stunt shows with Iron Man suits, VR superhero battles.
492
+ - Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers.
493
+ """
494
+ return "No relevant results found."
495
+
496
+ # Agent Classes
497
+ class PartyPlannerAgent:
498
+ def __init__(self, model, tokenizer):
499
+ self.model = model
500
+ self.tokenizer = tokenizer
501
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
502
+ self.model.to(self.device)
503
+ def generate(self, prompt: str) -> str:
504
+ self.model.eval()
505
+ with torch.no_grad():
506
+ inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
507
+ outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
508
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
509
+ def plan_party(self, task: str) -> pd.DataFrame:
510
+ search_result = mock_duckduckgo_search("latest superhero party trends")
511
+ prompt = f"Given this context: '{search_result}'\n{task}"
512
+ plan_text = self.generate(prompt)
513
+ locations = {
514
+ "Wayne Manor": (42.3601, -71.0589),
515
+ "New York": (40.7128, -74.0060),
516
+ "Los Angeles": (34.0522, -118.2437),
517
+ "London": (51.5074, -0.1278)
518
+ }
519
+ wayne_coords = locations["Wayne Manor"]
520
+ travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
521
+ catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
522
+ data = [
523
+ {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
524
+ {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
525
+ {"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
526
+ {"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
527
+ {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
528
+ {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
529
+ ]
530
+ return pd.DataFrame(data)
531
+
532
+ class CVPartyPlannerAgent:
533
+ def __init__(self, pipeline):
534
+ self.pipeline = pipeline
535
+ def generate(self, prompt: str) -> Image.Image:
536
+ return self.pipeline(prompt, num_inference_steps=20).images[0]
537
+ def plan_party(self, task: str) -> pd.DataFrame:
538
+ search_result = mock_search("superhero party trends")
539
+ prompt = f"Given this context: '{search_result}'\n{task}"
540
+ data = [
541
+ {"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
542
+ {"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
543
+ ]
544
+ return pd.DataFrame(data)
545
+
546
+ def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
547
+ def to_radians(degrees: float) -> float:
548
+ return degrees * (math.pi / 180)
549
+ lat1, lon1 = map(to_radians, origin_coords)
550
+ lat2, lon2 = map(to_radians, destination_coords)
551
+ EARTH_RADIUS_KM = 6371.0
552
+ dlon = lon2 - lon1
553
+ dlat = lat2 - lat1
554
+ a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
555
+ c = 2 * math.asin(math.sqrt(a))
556
+ distance = EARTH_RADIUS_KM * c
557
+ actual_distance = distance * 1.1
558
+ flight_time = (actual_distance / cruising_speed_kmh) + 1.0
559
+ return round(flight_time, 2)
560
+
561
+ # Main App
562
+ st.title("AI Vision & SFT Titans 🚀")
563
+
564
+ # Sidebar
565
+ st.sidebar.header("Captured Files 📜")
566
+ gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2)
567
+ def update_gallery():
568
+ media_files = get_gallery_files(["png", "txt"])
569
+ pdf_files = get_pdf_files()
570
+ if media_files or pdf_files:
571
+ st.sidebar.subheader("Images & Text 📸")
572
+ cols = st.sidebar.columns(2)
573
+ for idx, file in enumerate(media_files[:gallery_size * 2]):
574
+ with cols[idx % 2]:
575
+ if file.endswith(".png"):
576
+ st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
577
+ elif file.endswith(".txt"):
578
+ with open(file, "r") as f:
579
+ content = f.read()
580
+ st.text(content[:50] + "..." if len(content) > 50 else content, help=file)
581
+ st.sidebar.subheader("PDF Downloads 📖")
582
+ for pdf_file in pdf_files[:gallery_size * 2]:
583
+ st.markdown(get_download_link(pdf_file, "application/pdf", f"📥 Grab {os.path.basename(pdf_file)}"), unsafe_allow_html=True)
584
+ update_gallery()
585
+
586
+ st.sidebar.subheader("Model Management 🗂️")
587
+ model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type")
588
+ model_dirs = get_model_files(model_type)
589
+ selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select")
590
+ if selected_model != "None" and st.sidebar.button("Load Model 📂"):
591
+ builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
592
+ config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
593
+ builder.load_model(selected_model, config)
594
+ st.session_state['builder'] = builder
595
+ st.session_state['model_loaded'] = True
596
+ st.rerun()
597
+
598
+ st.sidebar.subheader("Action Logs 📜")
599
+ log_container = st.sidebar.empty()
600
+ with log_container:
601
+ for record in log_records:
602
+ st.write(f"{record.asctime} - {record.levelname} - {record.message}")
603
+
604
+ st.sidebar.subheader("History 📜")
605
+ history_container = st.sidebar.empty()
606
+ with history_container:
607
+ for entry in st.session_state['history'][-gallery_size * 2:]:
608
+ st.write(entry)
609
+
610
+ # Tabs
611
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9, tab10 = st.tabs([
612
+ "Camera Snap 📷", "Download PDFs 📥", "Build Titan 🌱", "Fine-Tune Titan 🔧",
613
+ "Test Titan 🧪", "Agentic RAG Party 🌐", "Test OCR 🔍", "Test Image Gen 🎨",
614
+ "Test Line Drawings ✏️", "Custom Diffusion 🎨🤓"
615
+ ])
616
+
617
+ with tab1:
618
+ st.header("Camera Snap 📷")
619
+ st.subheader("Single Capture")
620
+ cols = st.columns(2)
621
+ with cols[0]:
622
+ cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
623
+ if cam0_img:
624
+ filename = generate_filename("cam0")
625
+ if filename not in st.session_state['captured_images']:
626
+ with open(filename, "wb") as f:
627
+ f.write(cam0_img.getvalue())
628
+ st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
629
+ logger.info(f"Saved snapshot from Camera 0: {filename}")
630
+ st.session_state['captured_images'].append(filename)
631
+ update_gallery()
632
+ with cols[1]:
633
+ cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
634
+ if cam1_img:
635
+ filename = generate_filename("cam1")
636
+ if filename not in st.session_state['captured_images']:
637
+ with open(filename, "wb") as f:
638
+ f.write(cam1_img.getvalue())
639
+ st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
640
+ logger.info(f"Saved snapshot from Camera 1: {filename}")
641
+ st.session_state['captured_images'].append(filename)
642
+ update_gallery()
643
+
644
+ st.subheader("Burst Capture")
645
+ slice_count = st.number_input("Number of Frames", min_value=1, max_value=20, value=10, key="burst_count")
646
+ if st.button("Start Burst Capture 📸"):
647
+ st.session_state['burst_frames'] = []
648
+ placeholder = st.empty()
649
+ for i in range(slice_count):
650
+ with placeholder.container():
651
+ st.write(f"Capturing frame {i+1}/{slice_count}...")
652
+ img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}")
653
+ if img:
654
+ filename = generate_filename(f"burst_{i}")
655
+ if filename not in st.session_state['captured_images']:
656
+ with open(filename, "wb") as f:
657
+ f.write(img.getvalue())
658
+ st.session_state['burst_frames'].append(filename)
659
+ logger.info(f"Saved burst frame {i}: {filename}")
660
+ st.image(Image.open(filename), caption=filename, use_container_width=True)
661
+ time.sleep(0.5)
662
+ st.session_state['captured_images'].extend([f for f in st.session_state['burst_frames'] if f not in st.session_state['captured_images']])
663
+ update_gallery()
664
+ placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!")
665
+
666
+ with tab2:
667
+ st.header("Download PDFs 📥")
668
+ if st.button("Examples 📚"):
669
+ example_urls = [
670
+ "https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703", "https://arxiv.org/pdf/2408.11039",
671
+ "https://arxiv.org/pdf/2109.10282", "https://arxiv.org/pdf/2112.10752", "https://arxiv.org/pdf/2308.11236",
672
+ "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2006.11239", "https://arxiv.org/pdf/2305.11207",
673
+ "https://arxiv.org/pdf/2106.09685", "https://arxiv.org/pdf/2005.11401", "https://arxiv.org/pdf/2106.10504"
674
+ ]
675
+ st.session_state['pdf_urls'] = "\n".join(example_urls)
676
+
677
+ url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
678
+ if st.button("Robo-Download 🤖"):
679
+ urls = url_input.strip().split("\n")
680
+ progress_bar = st.progress(0)
681
+ status_text = st.empty()
682
+ total_urls = len(urls)
683
+ existing_pdfs = get_pdf_files()
684
+ for idx, url in enumerate(urls):
685
+ if url:
686
+ output_path = pdf_url_to_filename(url)
687
+ status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
688
+ if output_path not in existing_pdfs:
689
+ if download_pdf(url, output_path):
690
+ st.session_state['downloaded_pdfs'][url] = output_path
691
+ logger.info(f"Downloaded PDF from {url} to {output_path}")
692
+ entry = f"Downloaded PDF: {output_path}"
693
+ if entry not in st.session_state['history']:
694
+ st.session_state['history'].append(entry)
695
+ else:
696
+ st.error(f"Failed to nab {url} 😿")
697
+ else:
698
+ st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
699
+ st.session_state['downloaded_pdfs'][url] = output_path
700
+ progress_bar.progress((idx + 1) / total_urls)
701
+ status_text.text("Robo-Download complete! 🚀")
702
+ update_gallery()
703
+
704
+ st.subheader("PDF Gallery 📖")
705
+ downloaded_pdfs = list(st.session_state['downloaded_pdfs'].values())
706
+ if downloaded_pdfs:
707
+ cols_per_row = 3
708
+ for i in range(0, len(downloaded_pdfs), cols_per_row):
709
+ cols = st.columns(cols_per_row)
710
+ for j, pdf_path in enumerate(downloaded_pdfs[i:i + cols_per_row]):
711
+ with cols[j]:
712
+ doc = fitz.open(pdf_path)
713
+ page = doc[0]
714
+ pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
715
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
716
+ st.image(img, caption=os.path.basename(pdf_path), use_container_width=True)
717
+ checkbox_key = f"pdf_{pdf_path}"
718
+ st.session_state['pdf_checkboxes'][checkbox_key] = st.checkbox(
719
+ "Use for SFT/Input", value=st.session_state['pdf_checkboxes'].get(checkbox_key, False), key=checkbox_key
720
+ )
721
+ st.markdown(get_download_link(pdf_path, "application/pdf", "Snag It! 📥"), unsafe_allow_html=True)
722
+ if st.button("Zap It! 🗑️", key=f"delete_{pdf_path}"):
723
+ os.remove(pdf_path)
724
+ url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == pdf_path), None)
725
+ if url_key:
726
+ del st.session_state['downloaded_pdfs'][url_key]
727
+ del st.session_state['pdf_checkboxes'][checkbox_key]
728
+ st.success(f"PDF {os.path.basename(pdf_path)} vaporized! 💨")
729
+ st.rerun()
730
+ doc.close()
731
+ else:
732
+ st.info("No PDFs captured yet. Feed the robo-downloader some URLs! 🤖")
733
+
734
+ mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (Thumbnails)"], key="download_mode")
735
+ if st.button("Snapshot Selected 📸"):
736
+ selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
737
+ if selected_pdfs:
738
+ for pdf_path in selected_pdfs:
739
+ mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (Thumbnails)": "allthumbs"}[mode]
740
+ snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
741
+ for snapshot in snapshots:
742
+ st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
743
+ else:
744
+ st.warning("No PDFs selected for snapshotting! Check some boxes first. 📝")
745
+
746
+ with tab3:
747
+ st.header("Build Titan 🌱")
748
+ model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
749
+ base_model = st.selectbox("Select Tiny Model",
750
+ ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
751
+ ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
752
+ model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
753
+ domain = st.text_input("Target Domain", "general")
754
+ if st.button("Download Model ⬇️"):
755
+ config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
756
+ builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
757
+ builder.load_model(base_model, config)
758
+ builder.save_model(config.model_path)
759
+ st.session_state['builder'] = builder
760
+ st.session_state['model_loaded'] = True
761
+ entry = f"Built {model_type} model: {model_name}"
762
+ if entry not in st.session_state['history']:
763
+ st.session_state['history'].append(entry)
764
+ st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
765
+ st.rerun()
766
+
767
+ with tab4:
768
+ st.header("Fine-Tune Titan 🔧")
769
+ if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
770
+ st.warning("Please build or load a Titan first! ⚠️")
771
+ else:
772
+ if isinstance(st.session_state['builder'], ModelBuilder):
773
+ if st.button("Generate Sample CSV 📝"):
774
+ sample_data = [
775
+ {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
776
+ {"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
777
+ ]
778
+ csv_path = f"sft_data_{int(time.time())}.csv"
779
+ with open(csv_path, "w", newline="") as f:
780
+ writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
781
+ writer.writeheader()
782
+ writer.writerows(sample_data)
783
+ st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
784
+ st.success(f"Sample CSV generated as {csv_path}! ✅")
785
+
786
+ uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
787
+ if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
788
+ csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
789
+ with open(csv_path, "wb") as f:
790
+ f.write(uploaded_csv.read())
791
+ new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
792
+ new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
793
+ st.session_state['builder'].config = new_config
794
+ st.session_state['builder'].fine_tune_sft(csv_path)
795
+ st.session_state['builder'].save_model(new_config.model_path)
796
+ zip_path = f"{new_config.model_path}.zip"
797
+ zip_directory(new_config.model_path, zip_path)
798
+ entry = f"Fine-tuned Causal LM: {new_model_name}"
799
+ if entry not in st.session_state['history']:
800
+ st.session_state['history'].append(entry)
801
+ st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
802
+ st.rerun()
803
+ elif isinstance(st.session_state['builder'], DiffusionBuilder):
804
+ captured_files = get_gallery_files(["png"])
805
+ selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
806
+ if len(captured_files) + len(selected_pdfs) >= 2:
807
+ demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_files]
808
+ for pdf_path in selected_pdfs:
809
+ demo_data.append({"image": pdf_path, "text": f"PDF {os.path.basename(pdf_path)}"})
810
+ edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
811
+ if st.button("Fine-Tune with Dataset 🔄"):
812
+ images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()]
813
+ texts = [row["text"] for _, row in edited_data.iterrows()]
814
+ new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
815
+ new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain)
816
+ st.session_state['builder'].config = new_config
817
+ st.session_state['builder'].fine_tune_sft(images, texts)
818
+ st.session_state['builder'].save_model(new_config.model_path)
819
+ zip_path = f"{new_config.model_path}.zip"
820
+ zip_directory(new_config.model_path, zip_path)
821
+ entry = f"Fine-tuned Diffusion: {new_model_name}"
822
+ if entry not in st.session_state['history']:
823
+ st.session_state['history'].append(entry)
824
+ st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
825
+ csv_path = f"sft_dataset_{int(time.time())}.csv"
826
+ with open(csv_path, "w", newline="") as f:
827
+ writer = csv.writer(f)
828
+ writer.writerow(["image", "text"])
829
+ for _, row in edited_data.iterrows():
830
+ writer.writerow([row["image"], row["text"]])
831
+ st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
832
+
833
+ with tab5:
834
+ st.header("Test Titan 🧪")
835
+ if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
836
+ st.warning("Please build or load a Titan first! ⚠️")
837
+ else:
838
+ if isinstance(st.session_state['builder'], ModelBuilder):
839
+ if st.session_state['builder'].sft_data:
840
+ st.write("Testing with SFT Data:")
841
+ for item in st.session_state['builder'].sft_data[:3]:
842
+ prompt = item["prompt"]
843
+ expected = item["response"]
844
+ status_container = st.empty()
845
+ generated = st.session_state['builder'].evaluate(prompt, status_container)
846
+ st.write(f"**Prompt**: {prompt}")
847
+ st.write(f"**Expected**: {expected}")
848
+ st.write(f"**Generated**: {generated}")
849
+ st.write("---")
850
+ status_container.empty()
851
+ test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
852
+ if st.button("Run Test ▶️"):
853
+ status_container = st.empty()
854
+ result = st.session_state['builder'].evaluate(test_prompt, status_container)
855
+ entry = f"Causal LM Test: {test_prompt} -> {result}"
856
+ if entry not in st.session_state['history']:
857
+ st.session_state['history'].append(entry)
858
+ st.write(f"**Generated Response**: {result}")
859
+ status_container.empty()
860
+ elif isinstance(st.session_state['builder'], DiffusionBuilder):
861
+ test_prompt = st.text_area("Enter Test Prompt", "Neon Batman")
862
+ selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
863
+ if st.button("Run Test ▶️"):
864
+ image = st.session_state['builder'].generate(test_prompt)
865
+ output_file = generate_filename("diffusion_test", "png")
866
+ image.save(output_file)
867
+ entry = f"Diffusion Test: {test_prompt} -> {output_file}"
868
+ if entry not in st.session_state['history']:
869
+ st.session_state['history'].append(entry)
870
+ st.image(image, caption="Generated Image")
871
+ update_gallery()
872
+
873
+ with tab6:
874
+ st.header("Agentic RAG Party 🌐")
875
+ if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
876
+ st.warning("Please build or load a Titan first! ⚠️")
877
+ else:
878
+ if isinstance(st.session_state['builder'], ModelBuilder):
879
+ if st.button("Run NLP RAG Demo 🎉"):
880
+ agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
881
+ task = "Plan a luxury superhero-themed party at Wayne Manor."
882
+ plan_df = agent.plan_party(task)
883
+ entry = f"NLP RAG Demo: Planned party at Wayne Manor"
884
+ if entry not in st.session_state['history']:
885
+ st.session_state['history'].append(entry)
886
+ st.dataframe(plan_df)
887
+ elif isinstance(st.session_state['builder'], DiffusionBuilder):
888
+ if st.button("Run CV RAG Demo 🎉"):
889
+ agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
890
+ task = "Generate images for a luxury superhero-themed party."
891
+ plan_df = agent.plan_party(task)
892
+ entry = f"CV RAG Demo: Generated party images"
893
+ if entry not in st.session_state['history']:
894
+ st.session_state['history'].append(entry)
895
+ st.dataframe(plan_df)
896
+ for _, row in plan_df.iterrows():
897
+ image = agent.generate(row["Image Idea"])
898
+ output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png")
899
+ image.save(output_file)
900
+ st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
901
+ update_gallery()
902
+
903
+ with tab7:
904
+ st.header("Test OCR 🔍")
905
+ captured_files = get_gallery_files(["png"])
906
+ selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
907
+ all_files = captured_files + selected_pdfs
908
+ if all_files:
909
+ selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
910
+ if selected_file:
911
+ if selected_file.endswith('.png'):
912
+ image = Image.open(selected_file)
913
+ else:
914
+ doc = fitz.open(selected_file)
915
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
916
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
917
+ doc.close()
918
+ st.image(image, caption="Input Image", use_container_width=True)
919
+ ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "TrOCR-Small", "GOT-OCR2_0"], key="ocr_model_select")
920
+ prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt")
921
+ if st.button("Run OCR 🚀", key="ocr_run"):
922
+ output_file = generate_filename("ocr_output", "txt")
923
+ st.session_state['processing']['ocr'] = True
924
+ result = asyncio.run(process_ocr(image, prompt, ocr_model, output_file))
925
+ st.text_area("OCR Result", result, height=200, key="ocr_result")
926
+ st.success(f"OCR output saved to {output_file}")
927
+ st.session_state['processing']['ocr'] = False
928
+ else:
929
+ st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
930
+
931
+ with tab8:
932
+ st.header("Test Image Gen 🎨")
933
+ captured_files = get_gallery_files(["png"])
934
+ selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
935
+ all_files = captured_files + selected_pdfs
936
+ if all_files:
937
+ selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
938
+ if selected_file:
939
+ if selected_file.endswith('.png'):
940
+ image = Image.open(selected_file)
941
+ else:
942
+ doc = fitz.open(selected_file)
943
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
944
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
945
+ doc.close()
946
+ st.image(image, caption="Reference Image", use_container_width=True)
947
+ prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt")
948
+ if st.button("Run Image Gen 🚀", key="gen_run"):
949
+ output_file = generate_filename("gen_output", "png")
950
+ st.session_state['processing']['gen'] = True
951
+ result = asyncio.run(process_image_gen(prompt, output_file))
952
+ st.image(result, caption="Generated Image", use_container_width=True)
953
+ st.success(f"Image saved to {output_file}")
954
+ st.session_state['processing']['gen'] = False
955
+ else:
956
+ st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
957
+
958
+ with tab9:
959
+ st.header("Test Line Drawings ✏️")
960
+ captured_files = get_gallery_files(["png"])
961
+ selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
962
+ all_files = captured_files + selected_pdfs
963
+ if all_files:
964
+ selected_file = st.selectbox("Select Image or PDF", all_files, key="line_select")
965
+ if selected_file:
966
+ if selected_file.endswith('.png'):
967
+ image = Image.open(selected_file)
968
+ else:
969
+ doc = fitz.open(selected_file)
970
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
971
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
972
+ doc.close()
973
+ st.image(image, caption="Input Image", use_container_width=True)
974
+ if st.button("Run Line Drawing 🚀", key="line_run"):
975
+ output_file = generate_filename("line_output", "png")
976
+ st.session_state['processing']['line'] = True
977
+ result = asyncio.run(process_line_drawing(image, output_file))
978
+ st.image(result, caption="Line Drawing", use_container_width=True)
979
+ st.success(f"Line drawing saved to {output_file}")
980
+ st.session_state['processing']['line'] = False
981
+ else:
982
+ st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
983
+
984
+ with tab10:
985
+ st.header("Custom Diffusion 🎨🤓")
986
+ st.write("Unleash your inner artist with our tiny diffusion models!")
987
+ captured_files = get_gallery_files(["png"])
988
+ selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)]
989
+ all_files = captured_files + selected_pdfs
990
+ if all_files:
991
+ st.subheader("Select Images or PDFs to Train")
992
+ selected_files = st.multiselect("Pick Images or PDFs", all_files, key="diffusion_select")
993
+ images = []
994
+ for file in selected_files:
995
+ if file.endswith('.png'):
996
+ images.append(Image.open(file))
997
+ else:
998
+ doc = fitz.open(file)
999
+ pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
1000
+ images.append(Image.frombytes("RGB", [pix.width, pix.height], pix.samples))
1001
+ doc.close()
1002
+
1003
+ model_options = [
1004
+ ("PixelTickler 🎨✨", "OFA-Sys/small-stable-diffusion-v0"),
1005
+ ("DreamWeaver 🌙🖌️", "stabilityai/stable-diffusion-2-base"),
1006
+ ("TinyArtBot 🤖🖼️", "custom")
1007
+ ]
1008
+ model_choice = st.selectbox("Choose Your Diffusion Dynamo", [opt[0] for opt in model_options], key="diffusion_model")
1009
+ model_name = next(opt[1] for opt in model_options if opt[0] == model_choice)
1010
+
1011
+ if st.button("Train & Generate 🚀", key="diffusion_run"):
1012
+ output_file = generate_filename("custom_diffusion", "png")
1013
+ st.session_state['processing']['diffusion'] = True
1014
+ if model_name == "custom":
1015
+ result = asyncio.run(process_custom_diffusion(images, output_file, model_choice))
1016
+ else:
1017
+ builder = DiffusionBuilder()
1018
+ builder.load_model(model_name)
1019
+ result = builder.generate("A superhero scene inspired by captured images")
1020
+ result.save(output_file)
1021
+ entry = f"Custom Diffusion: {model_choice} -> {output_file}"
1022
+ if entry not in st.session_state['history']:
1023
+ st.session_state['history'].append(entry)
1024
+ st.image(result, caption=f"{model_choice} Masterpiece", use_container_width=True)
1025
+ st.success(f"Image saved to {output_file}")
1026
+ st.session_state['processing']['diffusion'] = False
1027
+ else:
1028
+ st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!")
1029
+
1030
+ # Initial Gallery Update
1031
+ update_gallery()