Update app.py
Browse files
app.py
CHANGED
@@ -4,41 +4,40 @@ import glob
|
|
4 |
import base64
|
5 |
import time
|
6 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import streamlit as st
|
8 |
import pandas as pd
|
9 |
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
13 |
-
from diffusers import StableDiffusionPipeline
|
14 |
-
from torch.utils.data import Dataset, DataLoader
|
15 |
-
import csv
|
16 |
import fitz
|
17 |
import requests
|
18 |
from PIL import Image
|
19 |
-
import
|
20 |
-
import
|
21 |
-
|
22 |
-
|
23 |
-
import
|
24 |
-
|
25 |
-
|
26 |
-
from typing import Optional, Tuple
|
27 |
-
import zipfile
|
28 |
-
import math
|
29 |
-
import random
|
30 |
-
import re
|
31 |
|
|
|
32 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
33 |
logger = logging.getLogger(__name__)
|
34 |
log_records = []
|
35 |
-
|
36 |
class LogCaptureHandler(logging.Handler):
|
37 |
def emit(self, record):
|
38 |
log_records.append(record)
|
39 |
-
|
40 |
logger.addHandler(LogCaptureHandler())
|
41 |
|
|
|
42 |
st.set_page_config(
|
43 |
page_title="AI Vision & SFT Titans 🚀",
|
44 |
page_icon="🤖",
|
@@ -51,6 +50,7 @@ st.set_page_config(
|
|
51 |
}
|
52 |
)
|
53 |
|
|
|
54 |
if 'history' not in st.session_state:
|
55 |
st.session_state['history'] = []
|
56 |
if 'builder' not in st.session_state:
|
@@ -74,6 +74,7 @@ if 'cam0_file' not in st.session_state:
|
|
74 |
if 'cam1_file' not in st.session_state:
|
75 |
st.session_state['cam1_file'] = None
|
76 |
|
|
|
77 |
@dataclass
|
78 |
class ModelConfig:
|
79 |
name: str
|
@@ -95,12 +96,14 @@ class DiffusionConfig:
|
|
95 |
def model_path(self):
|
96 |
return f"diffusion_models/{self.name}"
|
97 |
|
|
|
98 |
class ModelBuilder:
|
99 |
def __init__(self):
|
100 |
self.config = None
|
101 |
self.model = None
|
102 |
self.tokenizer = None
|
103 |
-
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂",
|
|
|
104 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
105 |
with st.spinner(f"Loading {model_path}... ⏳"):
|
106 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
@@ -128,7 +131,7 @@ class DiffusionBuilder:
|
|
128 |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
129 |
if config:
|
130 |
self.config = config
|
131 |
-
st.success(
|
132 |
return self
|
133 |
def save_model(self, path: str):
|
134 |
with st.spinner("Saving diffusion model... 💾"):
|
@@ -138,6 +141,7 @@ class DiffusionBuilder:
|
|
138 |
def generate(self, prompt: str):
|
139 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
140 |
|
|
|
141 |
def generate_filename(sequence, ext="png"):
|
142 |
timestamp = time.strftime("%d%m%Y%H%M%S")
|
143 |
return f"{sequence}_{timestamp}.{ext}"
|
@@ -181,6 +185,7 @@ def download_pdf(url, output_path):
|
|
181 |
logger.error(f"Failed to download {url}: {e}")
|
182 |
return False
|
183 |
|
|
|
184 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
185 |
start_time = time.time()
|
186 |
status = st.empty()
|
@@ -223,11 +228,10 @@ async def process_ocr(image, output_file):
|
|
223 |
status.text("Processing GOT-OCR2_0... (0s)")
|
224 |
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
225 |
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
226 |
-
# Save image to temporary file since GOT-OCR2_0 expects a file path
|
227 |
temp_file = f"temp_{int(time.time())}.png"
|
228 |
image.save(temp_file)
|
229 |
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
|
230 |
-
os.remove(temp_file)
|
231 |
elapsed = int(time.time() - start_time)
|
232 |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
233 |
async with aiofiles.open(output_file, "w") as f:
|
@@ -250,49 +254,31 @@ async def process_image_gen(prompt, output_file):
|
|
250 |
update_gallery()
|
251 |
return gen_image
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
if st.button("Zip All 🤐"):
|
273 |
-
zip_path = f"all_assets_{int(time.time())}.zip"
|
274 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
275 |
-
for file in get_gallery_files():
|
276 |
-
zipf.write(file, os.path.basename(file))
|
277 |
-
st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Assets"), unsafe_allow_html=True)
|
278 |
-
with cols[1]:
|
279 |
-
if st.button("Zap All! 🗑️"):
|
280 |
-
for file in get_gallery_files():
|
281 |
-
os.remove(file)
|
282 |
-
st.session_state['asset_checkboxes'].clear()
|
283 |
-
st.session_state['downloaded_pdfs'].clear()
|
284 |
-
st.session_state['cam0_file'] = None
|
285 |
-
st.session_state['cam1_file'] = None
|
286 |
-
st.sidebar.success("All assets vaporized! 💨")
|
287 |
-
st.rerun()
|
288 |
-
|
289 |
-
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2)
|
290 |
def update_gallery():
|
291 |
all_files = get_gallery_files()
|
292 |
if all_files:
|
293 |
st.sidebar.subheader("Asset Gallery 📸📖")
|
294 |
cols = st.sidebar.columns(2)
|
295 |
-
for idx, file in enumerate(all_files[:
|
296 |
with cols[idx % 2]:
|
297 |
st.session_state['unique_counter'] += 1
|
298 |
unique_id = st.session_state['unique_counter']
|
@@ -305,46 +291,41 @@ def update_gallery():
|
|
305 |
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
306 |
doc.close()
|
307 |
checkbox_key = f"asset_{file}_{unique_id}"
|
308 |
-
st.session_state['asset_checkboxes'][file] = st.checkbox(
|
309 |
-
"Use for SFT/Input",
|
310 |
-
value=st.session_state['asset_checkboxes'].get(file, False),
|
311 |
-
key=checkbox_key
|
312 |
-
)
|
313 |
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
|
314 |
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
|
315 |
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
|
316 |
os.remove(file)
|
317 |
-
|
318 |
-
del st.session_state['asset_checkboxes'][file]
|
319 |
-
if file.endswith('.pdf'):
|
320 |
-
url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == file), None)
|
321 |
-
if url_key:
|
322 |
-
del st.session_state['downloaded_pdfs'][url_key]
|
323 |
-
if file == st.session_state['cam0_file']:
|
324 |
-
st.session_state['cam0_file'] = None
|
325 |
-
if file == st.session_state['cam1_file']:
|
326 |
-
st.session_state['cam1_file'] = None
|
327 |
st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨")
|
328 |
-
st.
|
329 |
update_gallery()
|
330 |
|
|
|
331 |
st.sidebar.subheader("Action Logs 📜")
|
332 |
-
|
333 |
-
with log_container:
|
334 |
for record in log_records:
|
335 |
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
336 |
-
|
337 |
st.sidebar.subheader("History 📜")
|
338 |
-
|
339 |
-
|
340 |
-
for entry in st.session_state['history'][-gallery_size * 2:]:
|
341 |
st.write(entry)
|
342 |
|
343 |
-
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
])
|
|
|
346 |
|
347 |
-
|
|
|
348 |
st.header("Camera Snap 📷")
|
349 |
st.subheader("Single Capture")
|
350 |
cols = st.columns(2)
|
@@ -363,8 +344,6 @@ with tab1:
|
|
363 |
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
364 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
365 |
update_gallery()
|
366 |
-
elif st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
|
367 |
-
st.image(Image.open(st.session_state['cam0_file']), caption="Camera 0", use_container_width=True)
|
368 |
with cols[1]:
|
369 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
370 |
if cam1_img:
|
@@ -380,10 +359,9 @@ with tab1:
|
|
380 |
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
381 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
382 |
update_gallery()
|
383 |
-
elif st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
|
384 |
-
st.image(Image.open(st.session_state['cam1_file']), caption="Camera 1", use_container_width=True)
|
385 |
|
386 |
-
|
|
|
387 |
st.header("Download PDFs 📥")
|
388 |
if st.button("Examples 📚"):
|
389 |
example_urls = [
|
@@ -420,7 +398,7 @@ with tab2:
|
|
420 |
entry = f"Downloaded PDF: {output_path}"
|
421 |
if entry not in st.session_state['history']:
|
422 |
st.session_state['history'].append(entry)
|
423 |
-
st.session_state['asset_checkboxes'][output_path] = True
|
424 |
else:
|
425 |
st.error(f"Failed to nab {url} 😿")
|
426 |
else:
|
@@ -429,7 +407,6 @@ with tab2:
|
|
429 |
progress_bar.progress((idx + 1) / total_urls)
|
430 |
status_text.text("Robo-Download complete! 🚀")
|
431 |
update_gallery()
|
432 |
-
|
433 |
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
434 |
if st.button("Snapshot Selected 📸"):
|
435 |
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
@@ -439,12 +416,13 @@ with tab2:
|
|
439 |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
440 |
for snapshot in snapshots:
|
441 |
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
442 |
-
st.session_state['asset_checkboxes'][snapshot] = True
|
443 |
update_gallery()
|
444 |
else:
|
445 |
-
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar
|
446 |
|
447 |
-
|
|
|
448 |
st.header("Test OCR 🔍")
|
449 |
all_files = get_gallery_files()
|
450 |
if all_files:
|
@@ -509,7 +487,8 @@ with tab3:
|
|
509 |
else:
|
510 |
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
511 |
|
512 |
-
|
|
|
513 |
st.header("Build Titan 🌱")
|
514 |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
515 |
base_model = st.selectbox("Select Tiny Model",
|
@@ -530,10 +509,10 @@ with tab4:
|
|
530 |
if entry not in st.session_state['history']:
|
531 |
st.session_state['history'].append(entry)
|
532 |
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
533 |
-
st.
|
534 |
|
535 |
-
|
536 |
-
with
|
537 |
st.header("Test Image Gen 🎨")
|
538 |
all_files = get_gallery_files()
|
539 |
if all_files:
|
@@ -560,5 +539,140 @@ with tab5:
|
|
560 |
st.session_state['processing']['gen'] = False
|
561 |
else:
|
562 |
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
|
|
563 |
|
564 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import base64
|
5 |
import time
|
6 |
import shutil
|
7 |
+
import zipfile
|
8 |
+
import re
|
9 |
+
import logging
|
10 |
+
import asyncio
|
11 |
+
from io import BytesIO
|
12 |
+
from datetime import datetime
|
13 |
+
import pytz
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional
|
16 |
+
|
17 |
import streamlit as st
|
18 |
import pandas as pd
|
19 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
import fitz
|
21 |
import requests
|
22 |
from PIL import Image
|
23 |
+
from diffusers import StableDiffusionPipeline
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
25 |
+
|
26 |
+
# --- OpenAI Setup (for GPT related features) ---
|
27 |
+
import openai
|
28 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
29 |
+
openai.organization = os.getenv('OPENAI_ORG_ID')
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# --- Logging ---
|
32 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
33 |
logger = logging.getLogger(__name__)
|
34 |
log_records = []
|
|
|
35 |
class LogCaptureHandler(logging.Handler):
|
36 |
def emit(self, record):
|
37 |
log_records.append(record)
|
|
|
38 |
logger.addHandler(LogCaptureHandler())
|
39 |
|
40 |
+
# --- Streamlit Page Config ---
|
41 |
st.set_page_config(
|
42 |
page_title="AI Vision & SFT Titans 🚀",
|
43 |
page_icon="🤖",
|
|
|
50 |
}
|
51 |
)
|
52 |
|
53 |
+
# --- Session State Defaults ---
|
54 |
if 'history' not in st.session_state:
|
55 |
st.session_state['history'] = []
|
56 |
if 'builder' not in st.session_state:
|
|
|
74 |
if 'cam1_file' not in st.session_state:
|
75 |
st.session_state['cam1_file'] = None
|
76 |
|
77 |
+
# --- Model & Diffusion DataClasses ---
|
78 |
@dataclass
|
79 |
class ModelConfig:
|
80 |
name: str
|
|
|
96 |
def model_path(self):
|
97 |
return f"diffusion_models/{self.name}"
|
98 |
|
99 |
+
# --- Model Builders ---
|
100 |
class ModelBuilder:
|
101 |
def __init__(self):
|
102 |
self.config = None
|
103 |
self.model = None
|
104 |
self.tokenizer = None
|
105 |
+
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂",
|
106 |
+
"Training complete! Time for a binary coffee break. ☕"]
|
107 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
108 |
with st.spinner(f"Loading {model_path}... ⏳"):
|
109 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
|
131 |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
132 |
if config:
|
133 |
self.config = config
|
134 |
+
st.success("Diffusion model loaded! 🎨")
|
135 |
return self
|
136 |
def save_model(self, path: str):
|
137 |
with st.spinner("Saving diffusion model... 💾"):
|
|
|
141 |
def generate(self, prompt: str):
|
142 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
143 |
|
144 |
+
# --- Utility Functions ---
|
145 |
def generate_filename(sequence, ext="png"):
|
146 |
timestamp = time.strftime("%d%m%Y%H%M%S")
|
147 |
return f"{sequence}_{timestamp}.{ext}"
|
|
|
185 |
logger.error(f"Failed to download {url}: {e}")
|
186 |
return False
|
187 |
|
188 |
+
# --- Original PDF Snapshot & OCR Functions ---
|
189 |
async def process_pdf_snapshot(pdf_path, mode="single"):
|
190 |
start_time = time.time()
|
191 |
status = st.empty()
|
|
|
228 |
status.text("Processing GOT-OCR2_0... (0s)")
|
229 |
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
230 |
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
|
|
231 |
temp_file = f"temp_{int(time.time())}.png"
|
232 |
image.save(temp_file)
|
233 |
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
|
234 |
+
os.remove(temp_file)
|
235 |
elapsed = int(time.time() - start_time)
|
236 |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
237 |
async with aiofiles.open(output_file, "w") as f:
|
|
|
254 |
update_gallery()
|
255 |
return gen_image
|
256 |
|
257 |
+
# --- New Function: Process an image (PIL) with a custom prompt using GPT ---
|
258 |
+
def process_image_with_prompt(image, prompt, model="o3-mini-high"):
|
259 |
+
buffered = BytesIO()
|
260 |
+
image.save(buffered, format="PNG")
|
261 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
262 |
+
messages = [{
|
263 |
+
"role": "user",
|
264 |
+
"content": [
|
265 |
+
{"type": "text", "text": prompt},
|
266 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}"}}
|
267 |
+
]
|
268 |
+
}]
|
269 |
+
try:
|
270 |
+
response = openai.ChatCompletion.create(model=model, messages=messages)
|
271 |
+
return response.choices[0].message.content
|
272 |
+
except Exception as e:
|
273 |
+
return f"Error processing image with GPT: {str(e)}"
|
274 |
+
|
275 |
+
# --- Gallery Update ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
def update_gallery():
|
277 |
all_files = get_gallery_files()
|
278 |
if all_files:
|
279 |
st.sidebar.subheader("Asset Gallery 📸📖")
|
280 |
cols = st.sidebar.columns(2)
|
281 |
+
for idx, file in enumerate(all_files[:st.sidebar.slider("Gallery Size", 1, 10, 2)]):
|
282 |
with cols[idx % 2]:
|
283 |
st.session_state['unique_counter'] += 1
|
284 |
unique_id = st.session_state['unique_counter']
|
|
|
291 |
st.image(img, caption=os.path.basename(file), use_container_width=True)
|
292 |
doc.close()
|
293 |
checkbox_key = f"asset_{file}_{unique_id}"
|
294 |
+
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
|
|
|
|
|
|
|
|
|
295 |
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
|
296 |
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
|
297 |
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
|
298 |
os.remove(file)
|
299 |
+
st.session_state['asset_checkboxes'].pop(file, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨")
|
301 |
+
st.experimental_rerun()
|
302 |
update_gallery()
|
303 |
|
304 |
+
# --- Sidebar Logs & History ---
|
305 |
st.sidebar.subheader("Action Logs 📜")
|
306 |
+
with st.sidebar:
|
|
|
307 |
for record in log_records:
|
308 |
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
|
|
309 |
st.sidebar.subheader("History 📜")
|
310 |
+
with st.sidebar:
|
311 |
+
for entry in st.session_state['history']:
|
|
|
312 |
st.write(entry)
|
313 |
|
314 |
+
# --- Create Tabs (Existing + New) ---
|
315 |
+
tabs = st.tabs([
|
316 |
+
"Camera Snap 📷",
|
317 |
+
"Download PDFs 📥",
|
318 |
+
"Test OCR 🔍",
|
319 |
+
"Build Titan 🌱",
|
320 |
+
"Test Image Gen 🎨",
|
321 |
+
"PDF Process 📄",
|
322 |
+
"Image Process 🖼️",
|
323 |
+
"MD Gallery 📚"
|
324 |
])
|
325 |
+
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
|
326 |
|
327 |
+
# === Tab: Camera Snap (existing) ===
|
328 |
+
with tab_camera:
|
329 |
st.header("Camera Snap 📷")
|
330 |
st.subheader("Single Capture")
|
331 |
cols = st.columns(2)
|
|
|
344 |
st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
|
345 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
346 |
update_gallery()
|
|
|
|
|
347 |
with cols[1]:
|
348 |
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
349 |
if cam1_img:
|
|
|
359 |
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
360 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
361 |
update_gallery()
|
|
|
|
|
362 |
|
363 |
+
# === Tab: Download PDFs (existing) ===
|
364 |
+
with tab_download:
|
365 |
st.header("Download PDFs 📥")
|
366 |
if st.button("Examples 📚"):
|
367 |
example_urls = [
|
|
|
398 |
entry = f"Downloaded PDF: {output_path}"
|
399 |
if entry not in st.session_state['history']:
|
400 |
st.session_state['history'].append(entry)
|
401 |
+
st.session_state['asset_checkboxes'][output_path] = True
|
402 |
else:
|
403 |
st.error(f"Failed to nab {url} 😿")
|
404 |
else:
|
|
|
407 |
progress_bar.progress((idx + 1) / total_urls)
|
408 |
status_text.text("Robo-Download complete! 🚀")
|
409 |
update_gallery()
|
|
|
410 |
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
411 |
if st.button("Snapshot Selected 📸"):
|
412 |
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
|
|
416 |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
|
417 |
for snapshot in snapshots:
|
418 |
st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
|
419 |
+
st.session_state['asset_checkboxes'][snapshot] = True
|
420 |
update_gallery()
|
421 |
else:
|
422 |
+
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
|
423 |
|
424 |
+
# === Tab: Test OCR (existing) ===
|
425 |
+
with tab_ocr:
|
426 |
st.header("Test OCR 🔍")
|
427 |
all_files = get_gallery_files()
|
428 |
if all_files:
|
|
|
487 |
else:
|
488 |
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
489 |
|
490 |
+
# === Tab: Build Titan (existing) ===
|
491 |
+
with tab_build:
|
492 |
st.header("Build Titan 🌱")
|
493 |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
494 |
base_model = st.selectbox("Select Tiny Model",
|
|
|
509 |
if entry not in st.session_state['history']:
|
510 |
st.session_state['history'].append(entry)
|
511 |
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
512 |
+
st.experimental_rerun()
|
513 |
|
514 |
+
# === Tab: Test Image Gen (existing) ===
|
515 |
+
with tab_imggen:
|
516 |
st.header("Test Image Gen 🎨")
|
517 |
all_files = get_gallery_files()
|
518 |
if all_files:
|
|
|
539 |
st.session_state['processing']['gen'] = False
|
540 |
else:
|
541 |
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
542 |
+
update_gallery()
|
543 |
|
544 |
+
# === New Tab: PDF Process ===
|
545 |
+
with tab_pdf_process:
|
546 |
+
st.header("PDF Process")
|
547 |
+
st.subheader("Upload PDFs for GPT-based text extraction")
|
548 |
+
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
|
549 |
+
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
|
550 |
+
if st.button("Process Uploaded PDFs", key="process_pdfs"):
|
551 |
+
combined_text = ""
|
552 |
+
for pdf_file in uploaded_pdfs:
|
553 |
+
pdf_bytes = pdf_file.read()
|
554 |
+
temp_pdf_path = f"temp_{pdf_file.name}"
|
555 |
+
with open(temp_pdf_path, "wb") as f:
|
556 |
+
f.write(pdf_bytes)
|
557 |
+
try:
|
558 |
+
doc = fitz.open(temp_pdf_path)
|
559 |
+
st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
|
560 |
+
if view_mode == "Single Page":
|
561 |
+
for i, page in enumerate(doc):
|
562 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
563 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
564 |
+
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
|
565 |
+
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image")
|
566 |
+
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
|
567 |
+
else: # Double Page: combine two consecutive pages
|
568 |
+
pages = list(doc)
|
569 |
+
for i in range(0, len(pages), 2):
|
570 |
+
if i+1 < len(pages):
|
571 |
+
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
572 |
+
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
|
573 |
+
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
574 |
+
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
|
575 |
+
total_width = img1.width + img2.width
|
576 |
+
max_height = max(img1.height, img2.height)
|
577 |
+
combined_img = Image.new("RGB", (total_width, max_height))
|
578 |
+
combined_img.paste(img1, (0, 0))
|
579 |
+
combined_img.paste(img2, (img1.width, 0))
|
580 |
+
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
|
581 |
+
gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image")
|
582 |
+
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
|
583 |
+
else:
|
584 |
+
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
585 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
586 |
+
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
|
587 |
+
gpt_text = process_image_with_prompt(img, "Extract the electronic text from image")
|
588 |
+
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
|
589 |
+
doc.close()
|
590 |
+
except Exception as e:
|
591 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
592 |
+
finally:
|
593 |
+
os.remove(temp_pdf_path)
|
594 |
+
output_filename = generate_filename("processed_pdf", "md")
|
595 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
596 |
+
f.write(combined_text)
|
597 |
+
st.success(f"PDF processing complete. MD file saved as {output_filename}")
|
598 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
|
599 |
+
|
600 |
+
# === New Tab: Image Process ===
|
601 |
+
with tab_image_process:
|
602 |
+
st.header("Image Process")
|
603 |
+
st.subheader("Upload Images for GPT-based OCR")
|
604 |
+
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
|
605 |
+
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
|
606 |
+
if st.button("Process Uploaded Images", key="process_images"):
|
607 |
+
combined_text = ""
|
608 |
+
for img_file in uploaded_images:
|
609 |
+
try:
|
610 |
+
img = Image.open(img_file)
|
611 |
+
st.image(img, caption=img_file.name)
|
612 |
+
gpt_text = process_image_with_prompt(img, prompt_img)
|
613 |
+
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
|
614 |
+
except Exception as e:
|
615 |
+
st.error(f"Error processing image {img_file.name}: {str(e)}")
|
616 |
+
output_filename = generate_filename("processed_image", "md")
|
617 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
618 |
+
f.write(combined_text)
|
619 |
+
st.success(f"Image processing complete. MD file saved as {output_filename}")
|
620 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
|
621 |
+
|
622 |
+
# === New Tab: MD Gallery ===
|
623 |
+
with tab_md_gallery:
|
624 |
+
st.header("MD Gallery and GPT Processing")
|
625 |
+
md_files = sorted(glob.glob("*.md"))
|
626 |
+
if md_files:
|
627 |
+
st.subheader("Individual File Processing")
|
628 |
+
cols = st.columns(2)
|
629 |
+
for idx, md_file in enumerate(md_files):
|
630 |
+
with cols[idx % 2]:
|
631 |
+
st.write(md_file)
|
632 |
+
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
|
633 |
+
try:
|
634 |
+
with open(md_file, "r", encoding="utf-8") as f:
|
635 |
+
content = f.read()
|
636 |
+
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
|
637 |
+
messages = [{"role": "user", "content": prompt_md + "\n\n" + content}]
|
638 |
+
response = openai.ChatCompletion.create(model="o3-mini-high", messages=messages)
|
639 |
+
result_text = response.choices[0].message.content
|
640 |
+
st.markdown(result_text)
|
641 |
+
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
|
642 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
643 |
+
f.write(result_text)
|
644 |
+
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
|
645 |
+
except Exception as e:
|
646 |
+
st.error(f"Error processing {md_file}: {str(e)}")
|
647 |
+
st.subheader("Batch Processing")
|
648 |
+
st.write("Select MD files to combine and process:")
|
649 |
+
selected_md = {}
|
650 |
+
for md_file in md_files:
|
651 |
+
selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
|
652 |
+
batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
|
653 |
+
if st.button("Process Selected MD Files", key="process_batch_md"):
|
654 |
+
combined_content = ""
|
655 |
+
for md_file, selected in selected_md.items():
|
656 |
+
if selected:
|
657 |
+
try:
|
658 |
+
with open(md_file, "r", encoding="utf-8") as f:
|
659 |
+
combined_content += f"\n## {md_file}\n" + f.read() + "\n"
|
660 |
+
except Exception as e:
|
661 |
+
st.error(f"Error reading {md_file}: {str(e)}")
|
662 |
+
if combined_content:
|
663 |
+
messages = [{"role": "user", "content": batch_prompt + "\n\n" + combined_content}]
|
664 |
+
try:
|
665 |
+
response = openai.ChatCompletion.create(model="o3-mini-high", messages=messages)
|
666 |
+
result_text = response.choices[0].message.content
|
667 |
+
st.markdown(result_text)
|
668 |
+
output_filename = generate_filename("batch_processed_md", "md")
|
669 |
+
with open(output_filename, "w", encoding="utf-8") as f:
|
670 |
+
f.write(result_text)
|
671 |
+
st.success(f"Batch processing complete. MD file saved as {output_filename}")
|
672 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
|
673 |
+
except Exception as e:
|
674 |
+
st.error(f"Error processing batch: {str(e)}")
|
675 |
+
else:
|
676 |
+
st.warning("No MD files selected.")
|
677 |
+
else:
|
678 |
+
st.warning("No MD files found.")
|