awacke1 commited on
Commit
f0c19c8
·
verified ·
1 Parent(s): 90ec71a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +762 -0
app.py ADDED
@@ -0,0 +1,762 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import glob
4
+ import base64
5
+ import streamlit as st
6
+ import pandas as pd
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer
9
+ from torch.utils.data import Dataset, DataLoader
10
+ import csv
11
+ import time
12
+ from dataclasses import dataclass
13
+ from typing import Optional, Tuple
14
+ import zipfile
15
+ import math
16
+ from PIL import Image
17
+ import random
18
+ import logging
19
+ import numpy as np
20
+ import cv2
21
+ import sounddevice as sd
22
+
23
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
24
+ logger = logging.getLogger(__name__)
25
+ log_records = []
26
+
27
+ class LogCaptureHandler(logging.Handler):
28
+ def emit(self, record):
29
+ log_records.append(record)
30
+
31
+ logger.addHandler(LogCaptureHandler())
32
+
33
+ st.set_page_config(
34
+ page_title="SFT Tiny Titans 🚀",
35
+ page_icon="🤖",
36
+ layout="wide",
37
+ initial_sidebar_state="expanded",
38
+ menu_items={
39
+ 'Get Help': 'https://huggingface.co/awacke1',
40
+ 'Report a Bug': 'https://huggingface.co/spaces/awacke1',
41
+ 'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌"
42
+ }
43
+ )
44
+
45
+ if 'captured_images' not in st.session_state:
46
+ st.session_state['captured_images'] = []
47
+ if 'nlp_builder' not in st.session_state:
48
+ st.session_state['nlp_builder'] = None
49
+ if 'cv_builder' not in st.session_state:
50
+ st.session_state['cv_builder'] = None
51
+ if 'nlp_loaded' not in st.session_state:
52
+ st.session_state['nlp_loaded'] = False
53
+ if 'cv_loaded' not in st.session_state:
54
+ st.session_state['cv_loaded'] = False
55
+ if 'active_tab' not in st.session_state:
56
+ st.session_state['active_tab'] = "Build Titan 🌱"
57
+
58
+ @dataclass
59
+ class ModelConfig:
60
+ name: str
61
+ base_model: str
62
+ size: str
63
+ domain: Optional[str] = None
64
+ model_type: str = "causal_lm"
65
+ @property
66
+ def model_path(self):
67
+ return f"models/{self.name}"
68
+
69
+ @dataclass
70
+ class DiffusionConfig:
71
+ name: str
72
+ base_model: str
73
+ size: str
74
+ @property
75
+ def model_path(self):
76
+ return f"diffusion_models/{self.name}"
77
+
78
+ class SFTDataset(Dataset):
79
+ def __init__(self, data, tokenizer, max_length=128):
80
+ self.data = data
81
+ self.tokenizer = tokenizer
82
+ self.max_length = max_length
83
+ def __len__(self):
84
+ return len(self.data)
85
+ def __getitem__(self, idx):
86
+ prompt = self.data[idx]["prompt"]
87
+ response = self.data[idx]["response"]
88
+ full_text = f"{prompt} {response}"
89
+ full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
90
+ prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
91
+ input_ids = full_encoding["input_ids"].squeeze()
92
+ attention_mask = full_encoding["attention_mask"].squeeze()
93
+ labels = input_ids.clone()
94
+ prompt_len = prompt_encoding["input_ids"].shape[1]
95
+ if prompt_len < self.max_length:
96
+ labels[:prompt_len] = -100
97
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
98
+
99
+ class DiffusionDataset(Dataset):
100
+ def __init__(self, images, texts):
101
+ self.images = images
102
+ self.texts = texts
103
+ def __len__(self):
104
+ return len(self.images)
105
+ def __getitem__(self, idx):
106
+ return {"image": self.images[idx], "text": self.texts[idx]}
107
+
108
+ class ModelBuilder:
109
+ def __init__(self):
110
+ self.config = None
111
+ self.model = None
112
+ self.tokenizer = None
113
+ self.sft_data = None
114
+ self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
115
+ def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
116
+ try:
117
+ with st.spinner(f"Loading {model_path}... ⏳ (Patience, young padawan!)"):
118
+ self.model = AutoModelForCausalLM.from_pretrained(model_path)
119
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path)
120
+ if self.tokenizer.pad_token is None:
121
+ self.tokenizer.pad_token = self.tokenizer.eos_token
122
+ if config:
123
+ self.config = config
124
+ self.model.to("cuda" if torch.cuda.is_available() else "cpu")
125
+ st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
126
+ logger.info(f"Successfully loaded Causal LM model: {model_path}")
127
+ except torch.cuda.OutOfMemoryError as e:
128
+ st.error(f"GPU memory error loading {model_path}: {str(e)} 💥 (Out of GPU juice!)")
129
+ logger.error(f"GPU memory error loading {model_path}: {str(e)}")
130
+ raise
131
+ except MemoryError as e:
132
+ st.error(f"CPU memory error loading {model_path}: {str(e)} 💥 (RAM ran away!)")
133
+ logger.error(f"CPU memory error loading {model_path}: {str(e)}")
134
+ raise
135
+ except Exception as e:
136
+ st.error(f"Failed to load {model_path}: {str(e)} 💥 (Something broke—check the logs!)")
137
+ logger.error(f"Failed to load {model_path}: {str(e)}")
138
+ raise
139
+ return self
140
+ def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
141
+ try:
142
+ self.sft_data = []
143
+ with open(csv_path, "r") as f:
144
+ reader = csv.DictReader(f)
145
+ for row in reader:
146
+ self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
147
+ dataset = SFTDataset(self.sft_data, self.tokenizer)
148
+ dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
149
+ optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
150
+ self.model.train()
151
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
152
+ self.model.to(device)
153
+ for epoch in range(epochs):
154
+ with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️ (The AI is lifting weights!)"):
155
+ total_loss = 0
156
+ for batch in dataloader:
157
+ optimizer.zero_grad()
158
+ input_ids = batch["input_ids"].to(device)
159
+ attention_mask = batch["attention_mask"].to(device)
160
+ labels = batch["labels"].to(device)
161
+ outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
162
+ loss = outputs.loss
163
+ loss.backward()
164
+ optimizer.step()
165
+ total_loss += loss.item()
166
+ st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
167
+ st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
168
+ logger.info(f"Successfully fine-tuned Causal LM model: {self.config.name}")
169
+ except Exception as e:
170
+ st.error(f"Fine-tuning failed: {str(e)} 💥 (Training hit a snag!)")
171
+ logger.error(f"Fine-tuning failed: {str(e)}")
172
+ raise
173
+ return self
174
+ def save_model(self, path: str):
175
+ try:
176
+ with st.spinner("Saving model... 💾 (Packing the AI’s suitcase!)"):
177
+ os.makedirs(os.path.dirname(path), exist_ok=True)
178
+ self.model.save_pretrained(path)
179
+ self.tokenizer.save_pretrained(path)
180
+ st.success(f"Model saved at {path}! ✅ May the force be with it.")
181
+ logger.info(f"Model saved at {path}")
182
+ except Exception as e:
183
+ st.error(f"Failed to save model: {str(e)} 💥 (Save operation crashed!)")
184
+ logger.error(f"Failed to save model: {str(e)}")
185
+ raise
186
+ def evaluate(self, prompt: str, status_container=None):
187
+ self.model.eval()
188
+ if status_container:
189
+ status_container.write("Preparing to evaluate... 🧠 (Titan’s warming up its circuits!)")
190
+ logger.info(f"Evaluating prompt: {prompt}")
191
+ try:
192
+ with torch.no_grad():
193
+ inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
194
+ outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
195
+ result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
196
+ logger.info(f"Generated response: {result}")
197
+ return result
198
+ except Exception as e:
199
+ logger.error(f"Evaluation error: {str(e)}")
200
+ if status_container:
201
+ status_container.error(f"Oops! Something broke: {str(e)} 💥 (Titan tripped over a wire!)")
202
+ return f"Error: {str(e)}"
203
+
204
+ class DiffusionBuilder:
205
+ def __init__(self):
206
+ self.config = None
207
+ self.pipeline = None
208
+ def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
209
+ from diffusers import StableDiffusionPipeline
210
+ try:
211
+ with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
212
+ self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
213
+ self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
214
+ if config:
215
+ self.config = config
216
+ st.success(f"Diffusion model loaded! 🎨")
217
+ logger.info(f"Successfully loaded Diffusion model: {model_path}")
218
+ except torch.cuda.OutOfMemoryError as e:
219
+ st.error(f"GPU memory error loading {model_path}: {str(e)} 💥 (Out of GPU juice!)")
220
+ logger.error(f"GPU memory error loading {model_path}: {str(e)}")
221
+ raise
222
+ except MemoryError as e:
223
+ st.error(f"CPU memory error loading {model_path}: {str(e)} 💥 (RAM ran away!)")
224
+ logger.error(f"CPU memory error loading {model_path}: {str(e)}")
225
+ raise
226
+ except Exception as e:
227
+ st.error(f"Failed to load {model_path}: {str(e)} 💥 (Something broke—check the logs!)")
228
+ logger.error(f"Failed to load {model_path}: {str(e)}")
229
+ raise
230
+ return self
231
+ def fine_tune_sft(self, images, texts, epochs=3):
232
+ try:
233
+ dataset = DiffusionDataset(images, texts)
234
+ dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
235
+ optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
236
+ self.pipeline.unet.train()
237
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
238
+ for epoch in range(epochs):
239
+ with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
240
+ total_loss = 0
241
+ for batch in dataloader:
242
+ optimizer.zero_grad()
243
+ image = batch["image"][0].to(device)
244
+ text = batch["text"][0]
245
+ latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
246
+ noise = torch.randn_like(latents)
247
+ timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
248
+ noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
249
+ text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
250
+ pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
251
+ loss = torch.nn.functional.mse_loss(pred_noise, noise)
252
+ loss.backward()
253
+ optimizer.step()
254
+ total_loss += loss.item()
255
+ st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
256
+ st.success("Diffusion SFT Fine-tuning completed! 🎨")
257
+ logger.info(f"Successfully fine-tuned Diffusion model: {self.config.name}")
258
+ except Exception as e:
259
+ st.error(f"Fine-tuning failed: {str(e)} 💥 (Training hit a snag!)")
260
+ logger.error(f"Fine-tuning failed: {str(e)}")
261
+ raise
262
+ return self
263
+ def save_model(self, path: str):
264
+ try:
265
+ with st.spinner("Saving diffusion model... 💾"):
266
+ os.makedirs(os.path.dirname(path), exist_ok=True)
267
+ self.pipeline.save_pretrained(path)
268
+ st.success(f"Diffusion model saved at {path}! ✅")
269
+ logger.info(f"Diffusion model saved at {path}")
270
+ except Exception as e:
271
+ st.error(f"Failed to save model: {str(e)} 💥 (Save operation crashed!)")
272
+ logger.error(f"Failed to save model: {str(e)}")
273
+ raise
274
+ def generate(self, prompt: str):
275
+ try:
276
+ return self.pipeline(prompt, num_inference_steps=50).images[0]
277
+ except Exception as e:
278
+ st.error(f"Image generation failed: {str(e)} 💥 (Pixel party pooper!)")
279
+ logger.error(f"Image generation failed: {str(e)}")
280
+ raise
281
+
282
+ def generate_filename(sequence, ext="png"):
283
+ from datetime import datetime
284
+ import pytz
285
+ central = pytz.timezone('US/Central')
286
+ dt = datetime.now(central)
287
+ return f"{dt.strftime('%m-%d-%Y-%I-%M-%S-%p')}.{ext}"
288
+
289
+ def get_download_link(file_path, mime_type="text/plain", label="Download"):
290
+ try:
291
+ with open(file_path, 'rb') as f:
292
+ data = f.read()
293
+ b64 = base64.b64encode(data).decode()
294
+ return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
295
+ except Exception as e:
296
+ logger.error(f"Failed to generate download link for {file_path}: {str(e)}")
297
+ return f"Error: Could not generate link for {file_path}"
298
+
299
+ def zip_files(files, zip_path):
300
+ try:
301
+ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
302
+ for file in files:
303
+ zipf.write(file, os.path.basename(file))
304
+ logger.info(f"Created ZIP file: {zip_path}")
305
+ except Exception as e:
306
+ logger.error(f"Failed to create ZIP file {zip_path}: {str(e)}")
307
+ raise
308
+
309
+ def delete_files(files):
310
+ try:
311
+ for file in files:
312
+ os.remove(file)
313
+ logger.info(f"Deleted file: {file}")
314
+ st.session_state['captured_images'] = [f for f in st.session_state['captured_images'] if f not in files]
315
+ except Exception as e:
316
+ logger.error(f"Failed to delete files: {str(e)}")
317
+ raise
318
+
319
+ def get_model_files(model_type="causal_lm"):
320
+ path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
321
+ return [d for d in glob.glob(path) if os.path.isdir(d)]
322
+
323
+ def get_gallery_files(file_types):
324
+ return sorted(list(set(f for ext in file_types for f in glob.glob(f"*.{ext}"))))
325
+
326
+ def update_gallery():
327
+ media_files = get_gallery_files(["png"])
328
+ if media_files:
329
+ cols = st.sidebar.columns(2)
330
+ for idx, file in enumerate(media_files[:gallery_size * 2]):
331
+ with cols[idx % 2]:
332
+ st.image(Image.open(file), caption=file, use_container_width=True)
333
+ st.markdown(get_download_link(file, "image/png", "Download Image"), unsafe_allow_html=True)
334
+
335
+ def get_available_devices():
336
+ video_devices = []
337
+ for i in range(10):
338
+ cap = cv2.VideoCapture(i)
339
+ if cap.isOpened():
340
+ video_devices.append(f"Camera {i}")
341
+ cap.release()
342
+ audio_devices = sd.query_devices()
343
+ audio_list = [f"{device['name']} (ID: {i})" for i, device in enumerate(audio_devices) if device['max_input_channels'] > 0]
344
+ return video_devices, audio_list
345
+
346
+ def mock_search(query: str) -> str:
347
+ if "superhero" in query.lower():
348
+ return "Latest trends: Gold-plated Batman statues, VR superhero battles."
349
+ return "No relevant results found."
350
+
351
+ class PartyPlannerAgent:
352
+ def __init__(self, model, tokenizer):
353
+ self.model = model
354
+ self.tokenizer = tokenizer
355
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
356
+ self.model.to(self.device)
357
+ def generate(self, prompt: str) -> str:
358
+ self.model.eval()
359
+ with torch.no_grad():
360
+ inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
361
+ outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
362
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
363
+ def plan_party(self, task: str) -> pd.DataFrame:
364
+ search_result = mock_search("superhero party trends")
365
+ prompt = f"Given this context: '{search_result}'\n{task}"
366
+ plan_text = self.generate(prompt)
367
+ locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)}
368
+ wayne_coords = locations["Wayne Manor"]
369
+ travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
370
+ data = [
371
+ {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"},
372
+ {"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"}
373
+ ]
374
+ return pd.DataFrame(data)
375
+
376
+ class CVPartyPlannerAgent:
377
+ def __init__(self, pipeline):
378
+ self.pipeline = pipeline
379
+ def generate(self, prompt: str) -> Image.Image:
380
+ return self.pipeline(prompt, num_inference_steps=50).images[0]
381
+ def plan_party(self, task: str) -> pd.DataFrame:
382
+ search_result = mock_search("superhero party trends")
383
+ prompt = f"Given this context: '{search_result}'\n{task}"
384
+ data = [
385
+ {"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
386
+ {"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
387
+ ]
388
+ return pd.DataFrame(data)
389
+
390
+ def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
391
+ def to_radians(degrees: float) -> float:
392
+ return degrees * (math.pi / 180)
393
+ lat1, lon1 = map(to_radians, origin_coords)
394
+ lat2, lon2 = map(to_radians, destination_coords)
395
+ EARTH_RADIUS_KM = 6371.0
396
+ dlon = lon2 - lon1
397
+ dlat = lat2 - lat1
398
+ a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
399
+ c = 2 * math.asin(math.sqrt(a))
400
+ distance = EARTH_RADIUS_KM * c
401
+ actual_distance = distance * 1.1
402
+ flight_time = (actual_distance / cruising_speed_kmh) + 1.0
403
+ return round(flight_time, 2)
404
+
405
+ st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
406
+
407
+ st.sidebar.header("Media Gallery 🎨")
408
+ gallery_size = st.sidebar.slider("Gallery Size 📸", 1, 10, 4, help="Adjust how many epic captures you see! 🌟")
409
+ update_gallery()
410
+
411
+ col1, col2 = st.sidebar.columns(2)
412
+ with col1:
413
+ if st.button("Download All 📦"):
414
+ media_files = get_gallery_files(["png"])
415
+ if media_files:
416
+ zip_path = f"snapshot_collection_{int(time.time())}.zip"
417
+ zip_files(media_files, zip_path)
418
+ st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Snapshots"), unsafe_allow_html=True)
419
+ st.sidebar.success("Snapshots zipped and ready! 🎉 Grab your loot!")
420
+ else:
421
+ st.sidebar.warning("No snapshots to zip! 📸 Snap some pics first!")
422
+ with col2:
423
+ if st.button("Delete All 🗑️"):
424
+ media_files = get_gallery_files(["png"])
425
+ if media_files:
426
+ delete_files(media_files)
427
+ st.sidebar.success("All snapshots vanquished! 🧹 Gallery cleared!")
428
+ update_gallery()
429
+ else:
430
+ st.sidebar.warning("Nothing to delete! 📸 Snap some pics to clear later!")
431
+
432
+ uploaded_files = st.sidebar.file_uploader("Upload Files 🎵🎥🖼️📝��", type=["mp3", "mp4", "png", "jpeg", "md", "pdf", "docx"], accept_multiple_files=True)
433
+ if uploaded_files:
434
+ for uploaded_file in uploaded_files:
435
+ filename = uploaded_file.name
436
+ with open(filename, "wb") as f:
437
+ f.write(uploaded_file.getvalue())
438
+ logger.info(f"Uploaded file: {filename}")
439
+
440
+ st.sidebar.subheader("Audio Gallery 🎵")
441
+ audio_files = get_gallery_files(["mp3"])
442
+ if audio_files:
443
+ for file in audio_files[:gallery_size]:
444
+ st.sidebar.audio(file, format="audio/mp3")
445
+ st.sidebar.markdown(get_download_link(file, "audio/mp3", f"Download {file}"), unsafe_allow_html=True)
446
+
447
+ st.sidebar.subheader("Video Gallery 🎥")
448
+ video_files = get_gallery_files(["mp4"])
449
+ if video_files:
450
+ for file in video_files[:gallery_size]:
451
+ st.sidebar.video(file, format="video/mp4")
452
+ st.sidebar.markdown(get_download_link(file, "video/mp4", f"Download {file}"), unsafe_allow_html=True)
453
+
454
+ st.sidebar.subheader("Image Gallery 🖼️")
455
+ image_files = get_gallery_files(["png", "jpeg"])
456
+ if image_files:
457
+ cols = st.sidebar.columns(2)
458
+ for idx, file in enumerate(image_files[:gallery_size * 2]):
459
+ with cols[idx % 2]:
460
+ st.image(Image.open(file), caption=file, use_container_width=True)
461
+ st.markdown(get_download_link(file, "image/png" if file.endswith(".png") else "image/jpeg", f"Download {file}"), unsafe_allow_html=True)
462
+
463
+ st.sidebar.subheader("Markdown Gallery 📝")
464
+ md_files = get_gallery_files(["md"])
465
+ if md_files:
466
+ for file in md_files[:gallery_size]:
467
+ with open(file, "r") as f:
468
+ st.sidebar.markdown(f.read())
469
+ st.sidebar.markdown(get_download_link(file, "text/markdown", f"Download {file}"), unsafe_allow_html=True)
470
+
471
+ st.sidebar.subheader("Document Gallery 📜")
472
+ doc_files = get_gallery_files(["pdf", "docx"])
473
+ if doc_files:
474
+ for file in doc_files[:gallery_size]:
475
+ mime_type = "application/pdf" if file.endswith(".pdf") else "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
476
+ st.sidebar.markdown(get_download_link(file, mime_type, f"Download {file}"), unsafe_allow_html=True)
477
+
478
+ st.sidebar.subheader("Model Management 🗂️")
479
+ model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"])
480
+ model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion")
481
+ selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
482
+ if selected_model != "None" and st.sidebar.button("Load Model 📂"):
483
+ builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
484
+ config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
485
+ try:
486
+ builder.load_model(selected_model, config)
487
+ if model_type == "Causal LM":
488
+ st.session_state['nlp_builder'] = builder
489
+ st.session_state['nlp_loaded'] = True
490
+ else:
491
+ st.session_state['cv_builder'] = builder
492
+ st.session_state['cv_loaded'] = True
493
+ st.rerun()
494
+ except Exception as e:
495
+ st.error(f"Model load failed: {str(e)} 💥 (Check logs for details!)")
496
+
497
+ st.sidebar.subheader("Model Status 🚦")
498
+ st.sidebar.write(f"**NLP Model**: {'Loaded' if st.session_state['nlp_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['nlp_loaded'] and isinstance(st.session_state.get('nlp_builder'), ModelBuilder) else ''}")
499
+ st.sidebar.write(f"**CV Model**: {'Loaded' if st.session_state['cv_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['cv_loaded'] and isinstance(st.session_state.get('cv_builder'), DiffusionBuilder) else ''}")
500
+
501
+ tabs = [
502
+ "Build Titan 🌱", "Camera Snap 📷",
503
+ "Fine-Tune Titan (NLP) 🔧", "Test Titan (NLP) 🧪", "Agentic RAG Party (NLP) 🌐",
504
+ "Fine-Tune Titan (CV) 🔧", "Test Titan (CV) 🧪", "Agentic RAG Party (CV) 🌐"
505
+ ]
506
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(tabs)
507
+
508
+ for i, tab in enumerate(tabs):
509
+ if st.session_state['active_tab'] != tab and st.session_state.get(f'tab{i}_active', False):
510
+ logger.info(f"Switched to tab: {tab}")
511
+ st.session_state['active_tab'] = tab
512
+ st.session_state[f'tab{i}_active'] = (st.session_state['active_tab'] == tab)
513
+
514
+ with tab1:
515
+ st.header("Build Titan 🌱")
516
+ model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
517
+ base_model = st.selectbox("Select Tiny Model",
518
+ ["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
519
+ ["stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"])
520
+ model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
521
+ domain = st.text_input("Target Domain", "general", help="Where will your Titan flex its muscles? 💪") if model_type == "Causal LM" else None
522
+ if st.button("Download Model ⬇️"):
523
+ config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) if model_type == "Causal LM" else DiffusionConfig(name=model_name, base_model=base_model, size="small")
524
+ builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
525
+ try:
526
+ builder.load_model(base_model, config)
527
+ builder.save_model(config.model_path)
528
+ if model_type == "Causal LM":
529
+ st.session_state['nlp_builder'] = builder
530
+ st.session_state['nlp_loaded'] = True
531
+ else:
532
+ st.session_state['cv_builder'] = builder
533
+ st.session_state['cv_loaded'] = True
534
+ st.rerun()
535
+ except Exception as e:
536
+ st.error(f"Model build failed: {str(e)} 💥 (Check logs for details!)")
537
+
538
+ with tab2:
539
+ st.header("Camera Snap 📷 (Dual Capture!)")
540
+ video_devices, audio_devices = get_available_devices()
541
+ st.subheader("Device Settings ⚙️")
542
+ if not video_devices:
543
+ st.warning("No video devices detected! 📷 Please connect a camera.")
544
+ else:
545
+ st.write(f"Detected Video Devices: {', '.join(video_devices)}")
546
+ if not audio_devices:
547
+ st.warning("No audio input devices detected! 🎙️ Please connect a microphone.")
548
+ else:
549
+ st.write(f"Detected Audio Devices: {', '.join(audio_devices)}")
550
+ default_cam0 = video_devices[0] if video_devices else None
551
+ default_cam1 = video_devices[1] if len(video_devices) > 1 else default_cam0
552
+ selected_cam0 = st.selectbox("Select Camera 0", video_devices, index=0 if video_devices else -1, key="cam0_select")
553
+ selected_cam1 = st.selectbox("Select Camera 1", video_devices, index=1 if len(video_devices) > 1 else 0, key="cam1_select")
554
+ selected_audio = st.selectbox("Select Audio Device", audio_devices, key="audio_select") if audio_devices else st.write("No audio devices available.")
555
+ slice_count = st.number_input("Image Slice Count 🎞️", min_value=1, max_value=20, value=10, help="How many snaps to dream of? (Automation’s on vacation! 😜)")
556
+ video_length = st.number_input("Video Dream Length (seconds) 🎥", min_value=1, max_value=30, value=10, help="Imagine a vid this long—sadly, we’re stuck with pics for now! 😂")
557
+ cols = st.columns(2)
558
+ with cols[0]:
559
+ st.subheader(f"Camera 0 ({selected_cam0}) 🎬")
560
+ cam0_img = st.camera_input("Snap a Shot - Cam 0 📸", key="cam0", help="Click to capture a heroic moment! 🦸‍♂️")
561
+ if cam0_img:
562
+ filename = generate_filename(0)
563
+ with open(filename, "wb") as f:
564
+ f.write(cam0_img.getvalue())
565
+ st.image(Image.open(filename), caption=filename, use_container_width=True)
566
+ logger.info(f"Saved snapshot from Camera 0: {filename}")
567
+ st.session_state['captured_images'].append(filename)
568
+ update_gallery()
569
+ st.info("🚨 Multi-frame capture’s on strike! Snap one at a time—your Titan’s too cool for automation glitches! 😎")
570
+ with cols[1]:
571
+ st.subheader(f"Camera 1 ({selected_cam1}) 🎥")
572
+ cam1_img = st.camera_input("Snap a Shot - Cam 1 📸", key="cam1", help="Grab another epic frame! 🌟")
573
+ if cam1_img:
574
+ filename = generate_filename(1)
575
+ with open(filename, "wb") as f:
576
+ f.write(cam1_img.getvalue())
577
+ st.image(Image.open(filename), caption=filename, use_container_width=True)
578
+ logger.info(f"Saved snapshot from Camera 1: {filename}")
579
+ st.session_state['captured_images'].append(filename)
580
+ update_gallery()
581
+ st.info("🚨 Frame bursts? Nope, manual snaps only! One click, one masterpiece! 🎨")
582
+
583
+ with tab3:
584
+ st.header("Fine-Tune Titan (NLP) 🔧 (Teach Your Word Wizard Some Tricks!)")
585
+ if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
586
+ st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no magic!)")
587
+ else:
588
+ if st.button("Generate Sample CSV 📝"):
589
+ sample_data = [
590
+ {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
591
+ {"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
592
+ {"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."},
593
+ ]
594
+ csv_path = f"sft_data_{int(time.time())}.csv"
595
+ with open(csv_path, "w", newline="") as f:
596
+ writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
597
+ writer.writeheader()
598
+ writer.writerows(sample_data)
599
+ st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
600
+ st.success(f"Sample CSV generated as {csv_path}! ✅ (Fresh from the data oven!)")
601
+ uploaded_csv = st.file_uploader("Upload CSV for SFT 📜", type="csv", help="Feed your Titan some tasty prompt-response pairs! 🍽️")
602
+ if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
603
+ csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
604
+ with open(csv_path, "wb") as f:
605
+ f.write(uploaded_csv.read())
606
+ new_model_name = f"{st.session_state['nlp_builder'].config.name}-sft-{int(time.time())}"
607
+ new_config = ModelConfig(name=new_model_name, base_model=st.session_state['nlp_builder'].config.base_model, size="small", domain=st.session_state['nlp_builder'].config.domain)
608
+ st.session_state['nlp_builder'].config = new_config
609
+ with st.status("Fine-tuning NLP Titan... ⏳ (Whipping words into shape!)", expanded=True) as status:
610
+ st.session_state['nlp_builder'].fine_tune_sft(csv_path)
611
+ st.session_state['nlp_builder'].save_model(new_config.model_path)
612
+ status.update(label="Fine-tuning completed! 🎉 (Wordsmith Titan unleashed!)", state="complete")
613
+ zip_path = f"{new_config.model_path}.zip"
614
+ zip_files([new_config.model_path], zip_path)
615
+ st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned NLP Titan"), unsafe_allow_html=True)
616
+
617
+ with tab4:
618
+ st.header("Test Titan (NLP) 🧪 (Put Your Word Wizard to the Test!)")
619
+ if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
620
+ st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no test drive!)")
621
+ else:
622
+ if st.session_state['nlp_builder'].sft_data:
623
+ st.write("Testing with SFT Data:")
624
+ with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its word muscles!)"):
625
+ for item in st.session_state['nlp_builder'].sft_data[:3]:
626
+ prompt = item["prompt"]
627
+ expected = item["response"]
628
+ status_container = st.empty()
629
+ generated = st.session_state['nlp_builder'].evaluate(prompt, status_container)
630
+ st.write(f"**Prompt**: {prompt}")
631
+ st.write(f"**Expected**: {expected}")
632
+ st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
633
+ st.write("---")
634
+ status_container.empty()
635
+ test_prompt = st.text_area("Enter Test Prompt 🗣️", "What is AI?", help="Ask your Titan anything—it’s ready to chat! 😜")
636
+ if st.button("Run Test ▶️"):
637
+ with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"):
638
+ status_container = st.empty()
639
+ result = st.session_state['nlp_builder'].evaluate(test_prompt, status_container)
640
+ st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)")
641
+ status_container.empty()
642
+
643
+ with tab5:
644
+ st.header("Agentic RAG Party (NLP) 🌐 (Party Like It’s 2099!)")
645
+ st.write("This demo uses your SFT-tuned NLP Titan to plan a superhero party with mock retrieval!")
646
+ if not st.session_state['nlp_loaded'] or not isinstance(st.session_state['nlp_builder'], ModelBuilder):
647
+ st.warning("Please build or load an NLP Titan first! ⚠️ (No word wizard, no party!)")
648
+ else:
649
+ if st.button("Run NLP RAG Demo 🎉"):
650
+ with st.spinner("Loading your SFT-tuned NLP Titan... ⏳ (Titan’s suiting up!)"):
651
+ agent = PartyPlannerAgent(st.session_state['nlp_builder'].model, st.session_state['nlp_builder'].tokenizer)
652
+ st.write("Agent ready! 🦸‍♂️ (Time to plan an epic bash!)")
653
+ task = """
654
+ Plan a luxury superhero-themed party at Wayne Manor (42.3601° N, 71.0589° W).
655
+ Use mock search results for the latest superhero party trends, refine for luxury elements
656
+ (decorations, entertainment, catering), and calculate cargo travel times from key locations
657
+ (New York: 40.7128° N, 74.0060° W; LA: 34.0522° N, 118.2437° W; London: 51.5074° N, 0.1278° W)
658
+ to Wayne Manor. Create a plan with at least 6 entries in a pandas dataframe.
659
+ """
660
+ with st.spinner("Planning the ultimate superhero bash... ⏳ (Calling all caped crusaders!)"):
661
+ try:
662
+ locations = {
663
+ "Wayne Manor": (42.3601, -71.0589),
664
+ "New York": (40.7128, -74.0060),
665
+ "Los Angeles": (34.0522, -118.2437),
666
+ "London": (51.5074, -0.1278)
667
+ }
668
+ wayne_coords = locations["Wayne Manor"]
669
+ travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
670
+ search_result = mock_search("superhero party trends")
671
+ prompt = f"""
672
+ Given this context from a search: "{search_result}"
673
+ Plan a luxury superhero-themed party at Wayne Manor. Suggest luxury decorations, entertainment, and catering ideas.
674
+ """
675
+ plan_text = agent.generate(prompt)
676
+ catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"]
677
+ data = [
678
+ {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
679
+ {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
680
+ {"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
681
+ {"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
682
+ {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
683
+ {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
684
+ ]
685
+ plan_df = pd.DataFrame(data)
686
+ st.write("Agentic RAG Party Plan:")
687
+ st.dataframe(plan_df)
688
+ st.write("Party on, Wayne! 🦸‍♂️🎉")
689
+ except Exception as e:
690
+ st.error(f"Error planning party: {str(e)} (Even Superman has kryptonite days!)")
691
+ logger.error(f"Error in NLP RAG demo: {str(e)}")
692
+
693
+ with tab6:
694
+ st.header("Fine-Tune Titan (CV) 🔧 (Paint Your Titan’s Masterpiece!)")
695
+ if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder):
696
+ st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no canvas!)")
697
+ else:
698
+ captured_images = get_gallery_files(["png"])
699
+ if len(captured_images) >= 2:
700
+ demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), 10)]]
701
+ edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic", help="Craft your image-text pairs like a superhero artist! 🎨")
702
+ if st.button("Fine-Tune with Dataset 🔄"):
703
+ images = [Image.open(row["image"]) for _, row in edited_data.iterrows()]
704
+ texts = [row["text"] for _, row in edited_data.iterrows()]
705
+ new_model_name = f"{st.session_state['cv_builder'].config.name}-sft-{int(time.time())}"
706
+ new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
707
+ st.session_state['cv_builder'].config = new_config
708
+ with st.status("Fine-tuning CV Titan... ⏳ (Brushing up those pixels!)", expanded=True) as status:
709
+ st.session_state['cv_builder'].fine_tune_sft(images, texts)
710
+ st.session_state['cv_builder'].save_model(new_config.model_path)
711
+ status.update(label="Fine-tuning completed! 🎉 (Pixel Titan unleashed!)", state="complete")
712
+ zip_path = f"{new_config.model_path}.zip"
713
+ zip_files([new_config.model_path], zip_path)
714
+ st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned CV Titan"), unsafe_allow_html=True)
715
+ csv_path = f"sft_dataset_{int(time.time())}.csv"
716
+ with open(csv_path, "w", newline="") as f:
717
+ writer = csv.writer(f)
718
+ writer.writerow(["image", "text"])
719
+ for _, row in edited_data.iterrows():
720
+ writer.writerow([row["image"], row["text"]])
721
+ st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
722
+
723
+ with tab7:
724
+ st.header("Test Titan (CV) 🧪 (Unleash Your Pixel Power!)")
725
+ if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder):
726
+ st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no masterpiece!)")
727
+ else:
728
+ test_prompt = st.text_area("Enter Test Prompt 🎨", "Neon Batman", help="Dream up a wild image—your Titan’s got the brush! 🖌️")
729
+ if st.button("Run Test ▶️"):
730
+ with st.spinner("Painting your masterpiece... ⏳ (Titan’s mixing colors!)"):
731
+ image = st.session_state['cv_builder'].generate(test_prompt)
732
+ st.image(image, caption="Generated Image", use_container_width=True)
733
+
734
+ with tab8:
735
+ st.header("Agentic RAG Party (CV) 🌐 (Party with Pixels!)")
736
+ st.write("This demo uses your SFT-tuned CV Titan to generate superhero party images with mock retrieval!")
737
+ if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], DiffusionBuilder):
738
+ st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no party!)")
739
+ else:
740
+ if st.button("Run CV RAG Demo 🎉"):
741
+ with st.spinner("Loading your SFT-tuned CV Titan... ⏳ (Titan’s grabbing its paintbrush!)"):
742
+ agent = CVPartyPlannerAgent(st.session_state['cv_builder'].pipeline)
743
+ st.write("Agent ready! 🎨 (Time to paint an epic bash!)")
744
+ task = "Generate images for a luxury superhero-themed party."
745
+ with st.spinner("Crafting superhero party visuals... ⏳ (Pixels assemble!)"):
746
+ try:
747
+ plan_df = agent.plan_party(task)
748
+ st.dataframe(plan_df)
749
+ for _, row in plan_df.iterrows():
750
+ image = agent.generate(row["Image Idea"])
751
+ st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}", use_container_width=True)
752
+ except Exception as e:
753
+ st.error(f"Error in CV RAG demo: {str(e)} 💥 (Pixel party crashed!)")
754
+ logger.error(f"Error in CV RAG demo: {str(e)}")
755
+
756
+ st.sidebar.subheader("Action Logs 📜")
757
+ log_container = st.sidebar.empty()
758
+ with log_container:
759
+ for record in log_records:
760
+ st.write(f"{record.asctime} - {record.levelname} - {record.message}")
761
+
762
+ update_gallery()