Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,37 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import glob
|
4 |
import base64
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import zipfile
|
8 |
-
import re
|
9 |
import logging
|
10 |
-
import
|
11 |
-
import
|
12 |
-
from io import BytesIO
|
13 |
-
from datetime import datetime
|
14 |
import pytz
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
18 |
import streamlit as st
|
19 |
-
import
|
20 |
import torch
|
21 |
-
import
|
22 |
-
|
23 |
-
import
|
24 |
-
from
|
25 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
26 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
27 |
-
from
|
28 |
|
29 |
-
#
|
30 |
client = OpenAI(
|
31 |
api_key=os.getenv('OPENAI_API_KEY'),
|
32 |
organization=os.getenv('OPENAI_ORG_ID')
|
33 |
)
|
34 |
|
35 |
-
#
|
36 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
37 |
logger = logging.getLogger(__name__)
|
38 |
log_records = []
|
@@ -41,7 +40,7 @@ class LogCaptureHandler(logging.Handler):
|
|
41 |
log_records.append(record)
|
42 |
logger.addHandler(LogCaptureHandler())
|
43 |
|
44 |
-
#
|
45 |
st.set_page_config(
|
46 |
page_title="AI Vision & SFT Titans 🚀",
|
47 |
page_icon="🤖",
|
@@ -54,32 +53,20 @@ st.set_page_config(
|
|
54 |
}
|
55 |
)
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
if 'downloaded_pdfs' not in st.session_state:
|
69 |
-
st.session_state['downloaded_pdfs'] = {}
|
70 |
-
if 'unique_counter' not in st.session_state:
|
71 |
-
st.session_state['unique_counter'] = 0
|
72 |
-
if 'selected_model_type' not in st.session_state:
|
73 |
-
st.session_state['selected_model_type'] = "Causal LM"
|
74 |
-
if 'selected_model' not in st.session_state:
|
75 |
-
st.session_state['selected_model'] = "None"
|
76 |
-
if 'cam0_file' not in st.session_state:
|
77 |
-
st.session_state['cam0_file'] = None
|
78 |
-
if 'cam1_file' not in st.session_state:
|
79 |
-
st.session_state['cam1_file'] = None
|
80 |
|
81 |
-
|
82 |
-
@dataclass
|
83 |
class ModelConfig:
|
84 |
name: str
|
85 |
base_model: str
|
@@ -87,44 +74,43 @@ class ModelConfig:
|
|
87 |
domain: Optional[str] = None
|
88 |
model_type: str = "causal_lm"
|
89 |
@property
|
90 |
-
def model_path(self):
|
91 |
-
return f"models/{self.name}"
|
92 |
|
93 |
-
@dataclass
|
94 |
class DiffusionConfig:
|
95 |
name: str
|
96 |
base_model: str
|
97 |
size: str
|
98 |
domain: Optional[str] = None
|
99 |
@property
|
100 |
-
def model_path(self):
|
101 |
-
|
102 |
-
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
self.
|
107 |
-
self.
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
113 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
114 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
115 |
-
if self.tokenizer.pad_token is None:
|
116 |
-
|
117 |
-
if
|
118 |
-
|
119 |
-
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
120 |
-
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
121 |
return self
|
122 |
-
def save_model(self, path: str):
|
123 |
-
with st.spinner("Saving model... 💾"):
|
124 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
125 |
-
|
126 |
-
|
127 |
-
st.success(f"Model saved at {path}! ✅")
|
128 |
|
129 |
class DiffusionBuilder:
|
130 |
def __init__(self):
|
@@ -145,577 +131,387 @@ class DiffusionBuilder:
|
|
145 |
def generate(self, prompt: str):
|
146 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
147 |
|
148 |
-
#
|
149 |
-
def
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
def
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
|
158 |
-
with open(file_path, 'rb') as f:
|
159 |
-
data = f.read()
|
160 |
-
b64 = base64.b64encode(data).decode()
|
161 |
-
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
162 |
-
|
163 |
-
def zip_directory(directory_path, zip_path):
|
164 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
165 |
-
for root, _, files in os.walk(directory_path):
|
166 |
-
for file in files:
|
167 |
-
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
168 |
-
|
169 |
-
def get_model_files(model_type="causal_lm"):
|
170 |
-
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
171 |
-
dirs = [d for d in glob.glob(path) if os.path.isdir(d)]
|
172 |
-
return dirs if dirs else ["None"]
|
173 |
-
|
174 |
-
def get_gallery_files(file_types=["png", "pdf"]):
|
175 |
-
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
|
176 |
-
|
177 |
-
def get_pdf_files():
|
178 |
-
return sorted(glob.glob("*.pdf"))
|
179 |
|
|
|
180 |
def download_pdf(url, output_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
try:
|
182 |
-
|
183 |
-
if
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
elif mode == "allpages":
|
214 |
-
for i in range(len(doc)):
|
215 |
-
page = doc[i]
|
216 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
217 |
-
output_file = generate_filename(f"page_{i}", "png")
|
218 |
-
pix.save(output_file)
|
219 |
-
output_files.append(output_file)
|
220 |
-
doc.close()
|
221 |
-
elapsed = int(time.time() - start_time)
|
222 |
-
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
|
223 |
-
update_gallery()
|
224 |
-
return output_files
|
225 |
-
except Exception as e:
|
226 |
-
status.error(f"Failed to process PDF: {str(e)}")
|
227 |
-
return []
|
228 |
-
|
229 |
-
async def process_ocr(image, output_file):
|
230 |
-
start_time = time.time()
|
231 |
-
status = st.empty()
|
232 |
-
status.text("Processing GOT-OCR2_0... (0s)")
|
233 |
-
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
234 |
-
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
235 |
-
temp_file = f"temp_{int(time.time())}.png"
|
236 |
-
image.save(temp_file)
|
237 |
-
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
|
238 |
-
os.remove(temp_file)
|
239 |
-
elapsed = int(time.time() - start_time)
|
240 |
-
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
241 |
-
async with aiofiles.open(output_file, "w") as f:
|
242 |
-
await f.write(result)
|
243 |
-
update_gallery()
|
244 |
-
return result
|
245 |
-
|
246 |
-
async def process_image_gen(prompt, output_file):
|
247 |
-
start_time = time.time()
|
248 |
-
status = st.empty()
|
249 |
-
status.text("Processing Image Gen... (0s)")
|
250 |
-
if st.session_state['builder'] and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline:
|
251 |
-
pipeline = st.session_state['builder'].pipeline
|
252 |
-
else:
|
253 |
-
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
254 |
-
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
|
255 |
-
elapsed = int(time.time() - start_time)
|
256 |
-
status.text(f"Image Gen completed in {elapsed}s!")
|
257 |
-
gen_image.save(output_file)
|
258 |
-
update_gallery()
|
259 |
-
return gen_image
|
260 |
-
|
261 |
-
# --- Updated Function: Process an image (PIL) with a custom prompt using GPT ---
|
262 |
-
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
|
263 |
-
buffered = BytesIO()
|
264 |
-
image.save(buffered, format="PNG")
|
265 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
266 |
-
messages = [{
|
267 |
-
"role": "user",
|
268 |
-
"content": [
|
269 |
-
{"type": "text", "text": prompt},
|
270 |
-
{
|
271 |
-
"type": "image_url",
|
272 |
-
"image_url": {
|
273 |
-
"url": f"data:image/png;base64,{img_str}",
|
274 |
-
"detail": detail # Added detail parameter
|
275 |
-
}
|
276 |
-
}
|
277 |
-
]
|
278 |
-
}]
|
279 |
-
try:
|
280 |
-
response = client.chat.completions.create(
|
281 |
-
model=model,
|
282 |
-
messages=messages,
|
283 |
-
max_tokens=300
|
284 |
-
)
|
285 |
-
return response.choices[0].message.content
|
286 |
-
except Exception as e:
|
287 |
-
return f"Error processing image with GPT: {str(e)}"
|
288 |
-
|
289 |
-
# --- Updated Function: Process text with GPT ---
|
290 |
-
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
291 |
-
messages = [{"role": "user", "content": prompt + "\n\n" + text}]
|
292 |
try:
|
293 |
-
response = client.chat.completions.create(
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
return
|
301 |
-
|
302 |
-
|
303 |
-
st.sidebar.subheader("Gallery Settings")
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
#
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
if
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
key=checkbox_key
|
335 |
-
)
|
336 |
-
mime_type = "image/png" if file.endswith('.png') else "application/pdf"
|
337 |
-
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
|
338 |
-
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
|
339 |
-
os.remove(file)
|
340 |
-
st.session_state['asset_checkboxes'].pop(file, None)
|
341 |
-
st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨")
|
342 |
-
st.rerun()
|
343 |
-
|
344 |
-
update_gallery()
|
345 |
|
346 |
-
# --- Sidebar Logs & History ---
|
347 |
-
st.sidebar.subheader("Action Logs 📜")
|
348 |
-
with st.sidebar:
|
349 |
-
for record in log_records:
|
350 |
-
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
351 |
-
st.sidebar.subheader("History 📜")
|
352 |
-
with st.sidebar:
|
353 |
-
for entry in st.session_state['history']:
|
354 |
-
st.write(entry)
|
355 |
-
|
356 |
-
# --- Create Tabs ---
|
357 |
-
tabs = st.tabs([
|
358 |
-
"Camera Snap 📷",
|
359 |
-
"Download PDFs 📥",
|
360 |
-
"Test OCR 🔍",
|
361 |
-
"Build Titan 🌱",
|
362 |
-
"Test Image Gen 🎨",
|
363 |
-
"PDF Process 📄",
|
364 |
-
"Image Process 🖼️",
|
365 |
-
"MD Gallery 📚"
|
366 |
-
])
|
367 |
-
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
|
368 |
-
|
369 |
-
# === Tab: Camera Snap ===
|
370 |
with tab_camera:
|
371 |
-
st.header("Camera Snap 📷")
|
372 |
-
st.subheader("Single Capture")
|
373 |
-
cols = st.columns(2)
|
|
|
374 |
with cols[0]:
|
375 |
-
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
376 |
if cam0_img:
|
377 |
-
filename = generate_filename("cam0")
|
378 |
-
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
st.session_state['
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
update_gallery()
|
389 |
with cols[1]:
|
390 |
-
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
391 |
if cam1_img:
|
392 |
-
filename = generate_filename("cam1")
|
393 |
-
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
st.session_state['cam1_file'] = filename
|
398 |
-
entry = f"Snapshot from Cam 1: {filename}"
|
399 |
if entry not in st.session_state['history']:
|
400 |
-
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
|
401 |
-
st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
|
402 |
-
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
403 |
-
update_gallery()
|
404 |
|
405 |
# === Tab: Download PDFs ===
|
406 |
with tab_download:
|
407 |
-
st.header("Download PDFs 📥")
|
408 |
-
if st.button("Examples 📚"):
|
409 |
-
example_urls = [
|
410 |
-
"https://arxiv.org/pdf/2308.03892",
|
411 |
-
"https://arxiv.org/pdf/1912.01703",
|
412 |
-
"https://arxiv.org/pdf/2408.11039",
|
413 |
-
"https://arxiv.org/pdf/2109.10282",
|
414 |
-
"https://arxiv.org/pdf/2112.10752",
|
415 |
-
"https://arxiv.org/pdf/2308.11236",
|
416 |
-
"https://arxiv.org/pdf/1706.03762",
|
417 |
-
"https://arxiv.org/pdf/2006.11239",
|
418 |
-
"https://arxiv.org/pdf/2305.11207",
|
419 |
-
"https://arxiv.org/pdf/2106.09685",
|
420 |
-
"https://arxiv.org/pdf/2005.11401",
|
421 |
-
"https://arxiv.org/pdf/2106.10504"
|
422 |
-
]
|
423 |
-
st.session_state['pdf_urls'] = "\n".join(example_urls)
|
424 |
|
425 |
-
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
|
426 |
-
if st.button("Robo-Download 🤖"):
|
427 |
-
urls = url_input.strip().split("\n")
|
428 |
-
progress_bar = st.progress(0)
|
429 |
-
status_text = st.empty()
|
430 |
-
total_urls = len(urls)
|
431 |
-
existing_pdfs = get_pdf_files()
|
432 |
for idx, url in enumerate(urls):
|
433 |
if url:
|
434 |
-
output_path = pdf_url_to_filename(url)
|
435 |
-
status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
|
436 |
if output_path not in existing_pdfs:
|
437 |
if download_pdf(url, output_path):
|
438 |
-
|
439 |
-
logger.info(f"Downloaded PDF from {url} to {output_path}")
|
440 |
-
entry = f"Downloaded PDF: {output_path}"
|
441 |
-
if entry not in st.session_state['history']:
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
update_gallery()
|
452 |
-
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
|
453 |
-
if st.button("Snapshot Selected 📸"):
|
454 |
-
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
|
455 |
if selected_pdfs:
|
456 |
for pdf_path in selected_pdfs:
|
457 |
-
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]
|
458 |
-
snapshots
|
459 |
-
|
460 |
-
|
461 |
-
st.session_state['asset_checkboxes'][snapshot] = True
|
462 |
-
update_gallery()
|
463 |
-
else:
|
464 |
-
st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
|
465 |
|
466 |
# === Tab: Test OCR ===
|
467 |
with tab_ocr:
|
468 |
-
st.header("Test OCR 🔍")
|
469 |
-
all_files = get_gallery_files()
|
470 |
if all_files:
|
471 |
-
if st.button("OCR All Assets 🚀"):
|
472 |
-
full_text = "# OCR Results\n\n"
|
473 |
for file in all_files:
|
474 |
-
if file.endswith('.png'):
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
md_output_file = f"full_ocr_{int(time.time())}.md"
|
488 |
-
with open(md_output_file, "w") as f:
|
489 |
-
f.write(full_text)
|
490 |
-
st.success(f"Full OCR saved to {md_output_file}")
|
491 |
-
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
492 |
-
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
|
493 |
if selected_file:
|
494 |
-
if selected_file.endswith('.png'):
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
st.session_state['processing']['ocr'] =
|
505 |
-
|
506 |
-
|
507 |
-
if entry not in st.session_state['history']:
|
508 |
-
st.session_state['history'].append(entry)
|
509 |
-
st.text_area("OCR Result", result, height=200, key="ocr_result")
|
510 |
-
st.success(f"OCR output saved to {output_file}")
|
511 |
-
st.session_state['processing']['ocr'] = False
|
512 |
-
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
|
513 |
-
doc = fitz.open(selected_file)
|
514 |
-
full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
|
515 |
for i in range(len(doc)):
|
516 |
-
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
md_output_file
|
525 |
-
with open(md_output_file, "w") as f:
|
526 |
-
f.write(full_text)
|
527 |
-
st.success(f"Full OCR saved to {md_output_file}")
|
528 |
-
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
|
529 |
else:
|
530 |
-
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
|
531 |
|
532 |
# === Tab: Build Titan ===
|
533 |
with tab_build:
|
534 |
-
st.header("Build Titan 🌱")
|
535 |
-
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
536 |
-
base_model = st.selectbox(
|
537 |
-
|
538 |
-
["
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
st.session_state['
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
|
554 |
-
st.rerun()
|
555 |
|
556 |
# === Tab: Test Image Gen ===
|
557 |
with tab_imggen:
|
558 |
-
st.header("Test Image Gen 🎨")
|
559 |
-
all_files = get_gallery_files()
|
560 |
if all_files:
|
561 |
-
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
|
562 |
if selected_file:
|
563 |
-
if selected_file.endswith('.png'):
|
564 |
-
image = Image.open(selected_file)
|
565 |
else:
|
566 |
-
doc = fitz.open(selected_file)
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
st.
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
st.session_state['
|
575 |
-
result =
|
576 |
-
|
577 |
-
if entry not in st.session_state['history']:
|
578 |
-
st.session_state['history'].append(entry)
|
579 |
-
st.image(result, caption="Generated Image", use_container_width=True)
|
580 |
-
st.success(f"Image saved to {output_file}")
|
581 |
-
st.session_state['processing']['gen'] = False
|
582 |
else:
|
583 |
-
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
|
584 |
-
update_gallery()
|
585 |
|
586 |
# === Updated Tab: PDF Process ===
|
587 |
with tab_pdf_process:
|
588 |
-
st.header("PDF Process")
|
589 |
-
st.subheader("Upload PDFs for GPT-based text extraction")
|
590 |
-
gpt_models = ["gpt-4o", "gpt-4o-mini"] #
|
591 |
-
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
|
592 |
-
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
|
593 |
-
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
|
594 |
-
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
|
595 |
-
|
596 |
-
|
597 |
-
for
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
try:
|
603 |
-
doc = fitz.open(temp_pdf_path)
|
604 |
-
st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
|
605 |
-
if view_mode == "Single Page":
|
606 |
for i, page in enumerate(doc):
|
607 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
608 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
609 |
-
st.image(img, caption=f"{pdf_file.name} Page {i+1}")
|
610 |
-
gpt_text = process_image_with_prompt(
|
611 |
-
|
612 |
-
|
613 |
-
|
|
|
|
|
614 |
for i in range(0, len(pages), 2):
|
615 |
-
if i+1 < len(pages):
|
616 |
-
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
output_filename
|
640 |
-
|
641 |
-
|
642 |
-
st.success(f"PDF processing complete. MD file saved as {output_filename}")
|
643 |
-
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
|
644 |
|
645 |
# === Updated Tab: Image Process ===
|
646 |
with tab_image_process:
|
647 |
-
st.header("Image Process")
|
648 |
-
st.subheader("Upload Images for GPT-based OCR")
|
649 |
-
gpt_models = ["gpt-4o", "gpt-4o-mini"] #
|
650 |
-
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
|
651 |
-
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
|
652 |
-
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
|
653 |
-
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
|
654 |
-
if st.button("Process Uploaded Images", key="process_images"):
|
655 |
-
combined_text = ""
|
656 |
for img_file in uploaded_images:
|
657 |
try:
|
658 |
-
img = Image.open(img_file)
|
659 |
-
|
660 |
-
gpt_text
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
f.write(combined_text)
|
667 |
-
st.success(f"Image processing complete. MD file saved as {output_filename}")
|
668 |
-
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
|
669 |
|
670 |
# === Updated Tab: MD Gallery ===
|
671 |
with tab_md_gallery:
|
672 |
-
st.header("MD Gallery and GPT Processing")
|
673 |
-
gpt_models = ["gpt-4o", "gpt-4o-mini"] #
|
674 |
-
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
|
675 |
-
md_files = sorted(glob.glob("*.md"))
|
676 |
if md_files:
|
677 |
-
st.subheader("Individual File Processing")
|
678 |
-
cols = st.columns(2)
|
679 |
for idx, md_file in enumerate(md_files):
|
680 |
with cols[idx % 2]:
|
681 |
-
st.write(md_file)
|
682 |
-
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
|
683 |
try:
|
684 |
-
with open(md_file, "r", encoding="utf-8") as f:
|
685 |
-
|
686 |
-
|
687 |
-
result_text
|
688 |
-
|
689 |
-
output_filename =
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
st.
|
696 |
-
st.
|
697 |
-
|
698 |
-
|
699 |
-
selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
|
700 |
-
batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
|
701 |
-
if st.button("Process Selected MD Files", key="process_batch_md"):
|
702 |
-
combined_content = ""
|
703 |
for md_file, selected in selected_md.items():
|
704 |
if selected:
|
705 |
try:
|
706 |
-
with open(md_file, "r", encoding="utf-8") as f:
|
707 |
-
|
708 |
-
except Exception as e:
|
709 |
-
st.error(f"Error reading {md_file}: {str(e)}")
|
710 |
if combined_content:
|
711 |
-
result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model)
|
712 |
-
st.markdown(result_text)
|
713 |
-
output_filename = generate_filename("batch_processed_md", "md")
|
714 |
-
with open(output_filename, "w", encoding="utf-8") as f:
|
715 |
-
|
716 |
-
st.
|
717 |
-
st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
|
718 |
else:
|
719 |
-
st.warning("No MD files selected.")
|
720 |
else:
|
721 |
-
st.warning("No MD files found.")
|
|
|
1 |
+
import aiofiles
|
2 |
+
import asyncio
|
|
|
3 |
import base64
|
4 |
+
import fitz
|
5 |
+
import glob
|
|
|
|
|
6 |
import logging
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
|
|
|
|
9 |
import pytz
|
10 |
+
import random
|
11 |
+
import re
|
12 |
+
import requests
|
13 |
+
import shutil
|
14 |
import streamlit as st
|
15 |
+
import time
|
16 |
import torch
|
17 |
+
import zipfile
|
18 |
+
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from datetime import datetime
|
21 |
from diffusers import StableDiffusionPipeline
|
22 |
+
from io import BytesIO
|
23 |
+
from openai import OpenAI
|
24 |
+
from PIL import Image
|
25 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
|
26 |
+
from typing import Optional
|
27 |
|
28 |
+
# 🤖 OpenAI wizardry: Summon your API magic!
|
29 |
client = OpenAI(
|
30 |
api_key=os.getenv('OPENAI_API_KEY'),
|
31 |
organization=os.getenv('OPENAI_ORG_ID')
|
32 |
)
|
33 |
|
34 |
+
# 📜 Logging activated: Capturing chaos and calm!
|
35 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
36 |
logger = logging.getLogger(__name__)
|
37 |
log_records = []
|
|
|
40 |
log_records.append(record)
|
41 |
logger.addHandler(LogCaptureHandler())
|
42 |
|
43 |
+
# 🎨 Streamlit styling: Designing a cosmic interface!
|
44 |
st.set_page_config(
|
45 |
page_title="AI Vision & SFT Titans 🚀",
|
46 |
page_icon="🤖",
|
|
|
53 |
}
|
54 |
)
|
55 |
|
56 |
+
st.session_state.setdefault('history', []) # 🌱 History: starting fresh if empty!
|
57 |
+
st.session_state.setdefault('builder', None) # 🛠️ Builder: set up the builder if it's missing!
|
58 |
+
st.session_state.setdefault('model_loaded', False) # 🚦 Model Loaded: mark as not loaded by default!
|
59 |
+
st.session_state.setdefault('processing', {}) # ⏳ Processing: initialize processing state as an empty dict!
|
60 |
+
st.session_state.setdefault('asset_checkboxes', {}) # ✅ Asset Checkboxes: default to an empty dictionary!
|
61 |
+
st.session_state.setdefault('downloaded_pdfs', {}) # 📄 Downloaded PDFs: start with no PDFs downloaded!
|
62 |
+
st.session_state.setdefault('unique_counter', 0) # 🔢 Unique Counter: initialize the counter to zero!
|
63 |
+
st.session_state.setdefault('selected_model_type', "Causal LM") # 🧠 Selected Model Type: default to "Causal LM"!
|
64 |
+
st.session_state.setdefault('selected_model', "None") # 🤖 Selected Model: set to "None" if not already set!
|
65 |
+
st.session_state.setdefault('cam0_file', None) # 📸 Cam0 File: no file loaded by default!
|
66 |
+
st.session_state.setdefault('cam1_file', None) # 📸 Cam1 File: no file loaded by default!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
|
69 |
+
@dataclass # 🎨 ModelConfig: A blueprint for model configurations!
|
70 |
class ModelConfig:
|
71 |
name: str
|
72 |
base_model: str
|
|
|
74 |
domain: Optional[str] = None
|
75 |
model_type: str = "causal_lm"
|
76 |
@property
|
77 |
+
def model_path(self): return f"models/{self.name}" # 🚀 Model Path: Home base for brilliance!
|
|
|
78 |
|
79 |
+
@dataclass # 🎨 DiffusionConfig: Where diffusion magic takes shape!
|
80 |
class DiffusionConfig:
|
81 |
name: str
|
82 |
base_model: str
|
83 |
size: str
|
84 |
domain: Optional[str] = None
|
85 |
@property
|
86 |
+
def model_path(self): return f"diffusion_models/{self.name}" # 🚀 Diffusion Path: Let the diffusion begin!
|
87 |
+
|
88 |
+
class ModelBuilder: # 🔧 ModelBuilder: Crafting AI wonders with wit!
|
89 |
+
def __init__(self): # 🚀 Initialize: Setting up the AI factory!
|
90 |
+
self.config = None # No config yet—waiting for genius!
|
91 |
+
self.model = None # Model not built until the magic happens!
|
92 |
+
self.tokenizer = None # Tokenizer: Ready to speak in AI!
|
93 |
+
self.jokes = [ # 🤣 Jokes to keep the circuits laughing!
|
94 |
+
"Why did the AI go to therapy? Too many layers to unpack! 😂",
|
95 |
+
"Training complete! Time for a binary coffee break. ☕",
|
96 |
+
"I told my neural network a joke; it couldn't stop dropping bits! 🤖",
|
97 |
+
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
|
98 |
+
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
|
99 |
+
]
|
100 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): # 🔄 load_model: Booting up genius!
|
101 |
+
with st.spinner(f"Loading {model_path}... ⏳"): # ⏳ Spinner: Genius loading...
|
102 |
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
103 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
104 |
+
if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # 🔧 Fix pad token if missing!
|
105 |
+
if config: self.config = config # 🛠️ Config loaded—setting the stage!
|
106 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu") # 💻 Deploying the model to its device!
|
107 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") # 🎉 Success: Model is now in orbit!
|
|
|
|
|
108 |
return self
|
109 |
+
def save_model(self, path: str): # 💾 save_model: Securing your masterpiece!
|
110 |
+
with st.spinner("Saving model... 💾"): # ⏳ Spinner: Saving brilliance...
|
111 |
+
os.makedirs(os.path.dirname(path), exist_ok=True); self.model.save_pretrained(path); self.tokenizer.save_pretrained(path) # 📂 Directory magic: Creating and saving!
|
112 |
+
st.success(f"Model saved at {path}! ✅") # ✅ Success: Your model is safely stored!
|
113 |
+
|
|
|
114 |
|
115 |
class DiffusionBuilder:
|
116 |
def __init__(self):
|
|
|
131 |
def generate(self, prompt: str):
|
132 |
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
133 |
|
134 |
+
def generate_filename(sequence, ext="png"): return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}" # ⏳ Generate filename with timestamp magic!
|
135 |
+
def pdf_url_to_filename(url): return f"{re.sub(r'[<>:\"/\\|?*]', '_', url)}.pdf" # 📄 Convert URL to a safe PDF filename – no hackers allowed!
|
136 |
+
def get_download_link(file_path, mime_type="application/pdf", label="Download"): return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>' # 🔗 Create a download link – click it like it's hot!
|
137 |
+
def zip_directory(directory_path, zip_path):
|
138 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: [zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) for root, _, files in os.walk(directory_path) for file in files] # 🎁 Zip directory: Packing files faster than Santa on Christmas Eve!
|
139 |
+
def get_model_files(model_type="causal_lm"): return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"] # 📂 Get model files: Hunting directories like a pro!
|
140 |
+
def get_gallery_files(file_types=["png", "pdf"]): return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) # 🖼️ Get gallery files: Finding art in a digital haystack!
|
141 |
+
def get_pdf_files(): return sorted(glob.glob("*.pdf")) # 📄 Get PDF files: Sorted and served – no paper cuts here!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# 📥 Download PDF: Delivering docs faster than a caffeinated courier!
|
144 |
def download_pdf(url, output_path):
|
145 |
+
try:
|
146 |
+
response = requests.get(url, stream=True, timeout=10); [open(output_path, "wb").write(chunk) for chunk in response.iter_content(chunk_size=8192)] if response.status_code == 200 else None; ret = True if response.status_code == 200 else False
|
147 |
+
except requests.RequestException as e:
|
148 |
+
logger.error(f"Failed to download {url}: {e}"); ret = False
|
149 |
+
return ret
|
150 |
+
|
151 |
+
# 📚 Async PDF Snapshot: Snap your PDF pages without blocking—juggle pages like a ninja! 🥷
|
152 |
+
async def process_pdf_snapshot(pdf_path, mode="single"):
|
153 |
+
start_time = time.time(); status = st.empty(); status.text(f"Processing PDF Snapshot ({mode})... (0s)")
|
154 |
try:
|
155 |
+
doc = fitz.open(pdf_path); output_files = []
|
156 |
+
if mode == "single": page = doc[0]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename("single", "png"); pix.save(output_file); output_files.append(output_file)
|
157 |
+
elif mode == "twopage":
|
158 |
+
for i in range(min(2, len(doc))): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"twopage_{i}", "png"); pix.save(output_file); output_files.append(output_file)
|
159 |
+
elif mode == "allpages":
|
160 |
+
for i in range(len(doc)): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"page_{i}", "png"); pix.save(output_file); output_files.append(output_file)
|
161 |
+
doc.close(); elapsed = int(time.time() - start_time); status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!"); update_gallery(); return output_files
|
162 |
+
except Exception as e: status.error(f"Failed to process PDF: {str(e)}"); return []
|
163 |
+
|
164 |
+
# 😎 Async OCR: Convert images to text while your app keeps on groovin'—no blocking, just rocking! 🎸
|
165 |
+
async def process_ocr(image, output_file):
|
166 |
+
start_time = time.time(); status = st.empty(); status.text("Processing GOT-OCR2_0... (0s)")
|
167 |
+
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True); model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
|
168 |
+
temp_file = f"temp_{int(time.time())}.png"; image.save(temp_file)
|
169 |
+
result = model.chat(tokenizer, temp_file, ocr_type='ocr'); os.remove(temp_file)
|
170 |
+
elapsed = int(time.time() - start_time); status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
|
171 |
+
async with aiofiles.open(output_file, "w") as f: await f.write(result)
|
172 |
+
update_gallery(); return result
|
173 |
+
|
174 |
+
# 🧞 Async Image Gen: Your image genie—wishing up pictures while the event loop keeps the party going! 🎉
|
175 |
+
async def process_image_gen(prompt, output_file):
|
176 |
+
start_time = time.time(); status = st.empty(); status.text("Processing Image Gen... (0s)")
|
177 |
+
pipeline = st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
|
178 |
+
gen_image = pipeline(prompt, num_inference_steps=20).images[0]; elapsed = int(time.time() - start_time)
|
179 |
+
status.text(f"Image Gen completed in {elapsed}s!"); gen_image.save(output_file); update_gallery(); return gen_image
|
180 |
+
|
181 |
+
# 🖼️ GPT-Image Interpreter: Turning pixels into prose!
|
182 |
+
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
|
183 |
+
buffered = BytesIO(); image.save(buffered, format="PNG") # 💾 Save the image in-memory as PNG—no hard drives harmed!
|
184 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") # 🔐 Encode image data in Base64 for secure, inline transmission!
|
185 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}] # 💬 Build the GPT conversation with your prompt and image!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
try:
|
187 |
+
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # 🤖 Invoke GPT’s magic and return its dazzling output!
|
188 |
+
except Exception as e: return f"Error processing image with GPT: {str(e)}" # ⚠️ Oops—GPT encountered a snag, so we catch and report the error!
|
189 |
+
|
190 |
+
# 📝 GPT-Text Alchemist: Merging your prompt and text into digital gold!
|
191 |
+
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
|
192 |
+
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] # 🛠️ Constructing the conversation input like a master wordsmith!
|
193 |
+
try:
|
194 |
+
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # 🤖 Summon GPT’s wisdom and return its brilliant answer!
|
195 |
+
except Exception as e: return f"Error processing text with GPT: {str(e)}" # ⚠️ Oops, GPT stumbled—catching and reporting the error!
|
196 |
+
|
197 |
+
st.sidebar.subheader("Gallery Settings") # 🎨 Sidebar Gallery: Customize your creative space!
|
198 |
+
st.session_state.setdefault('gallery_size', 2) # 🔧 Setting default gallery size to 2 if it's missing!
|
199 |
+
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") # 🎚️ Slide to adjust your gallery size and bring balance to your art!
|
200 |
+
|
201 |
+
# 📸 Gallery Updater: Making your assets dazzle and disappear faster than a magician's rabbit! 🐇✨
|
202 |
+
def update_gallery():
|
203 |
+
all_files = get_gallery_files() # 🔍 Grab all gallery files like a digital treasure hunt!
|
204 |
+
if all_files: # ✅ If assets are found, let the show begin!
|
205 |
+
st.sidebar.subheader("Asset Gallery 📸📖"); cols = st.sidebar.columns(2) # 🎨 Set up a stylish 2-column layout in the sidebar!
|
206 |
+
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): # 🖼️ Loop through your favorite files, limited by gallery size!
|
207 |
+
with cols[idx % 2]: # 🔄 Alternate columns—because balance is key (and funny)!
|
208 |
+
st.session_state['unique_counter'] += 1; unique_id = st.session_state['unique_counter'] # 🚀 Increment your asset counter—every asset gets its moment in the spotlight!
|
209 |
+
if file.endswith('.png'): st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) # 🖼️ Display the image like a masterpiece!
|
210 |
+
else: # 📄 For PDFs, we snap their first page like a paparazzo!
|
211 |
+
doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(img, caption=os.path.basename(file), use_container_width=True); doc.close()
|
212 |
+
checkbox_key = f"asset_{file}_{unique_id}" # 🔑 Create a unique key—because every asset deserves VIP treatment!
|
213 |
+
st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key) # ✅ Checkbox: Pick your asset for magic (or SFT)!
|
214 |
+
mime_type = "image/png" if file.endswith('.png') else "application/pdf" # 📎 Determine MIME type—like sorting your socks, but cooler!
|
215 |
+
st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True) # 🔗 Provide a download link—grab your asset faster than a flash sale!
|
216 |
+
if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"): # ⚡ "Zap It!" button: Because sometimes you just gotta make stuff disappear!
|
217 |
+
os.remove(file); st.session_state['asset_checkboxes'].pop(file, None); st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨"); st.rerun() # 💥 Delete the file and refresh the gallery—poof, it's gone!
|
218 |
+
update_gallery() # 🎉 Launch the gallery update—let the art party commence! (Joke: Why did the asset cross the road? To get zapped on the other side! 😆)
|
219 |
+
|
220 |
+
st.sidebar.subheader("Action Logs 📜") # 📝 Action Logs: Where our system whispers its secrets!
|
221 |
+
with st.sidebar: [st.write(f"{record.asctime} - {record.levelname} - {record.message}") for record in log_records] # 📚 Loop through log records and display them like diary entries!
|
222 |
+
|
223 |
+
st.sidebar.subheader("History 📜") # 🕰️ History: A walk down memory lane, one log at a time!
|
224 |
+
with st.sidebar: [st.write(entry) for entry in st.session_state['history']] # ⏳ Display every historic moment with style!
|
225 |
+
|
226 |
+
tabs = st.tabs(["Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱", "Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"]) # 🎭 Tabs: Navigate your AI universe like a boss!
|
227 |
+
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs # 🚀 Unpack the tabs and get ready to explore—because even tabs need to party!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
with tab_camera:
|
230 |
+
st.header("Camera Snap 📷") # 🎥 Header: Let’s capture those Kodak moments!
|
231 |
+
st.subheader("Single Capture") # 📸 Subheader: One snap at a time, no double exposure!
|
232 |
+
cols = st.columns(2) # 🧩 Creating two columns for double-camera action!
|
233 |
+
|
234 |
with cols[0]:
|
235 |
+
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") # 📷 Cam 0: Say cheese!
|
236 |
if cam0_img:
|
237 |
+
filename = generate_filename("cam0") # 🏷️ Filename for Cam 0 snapshot generated!
|
238 |
+
if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']): os.remove(st.session_state['cam0_file']) # 🗑️ Out with the old Cam 0 snap!
|
239 |
+
with open(filename, "wb") as f: f.write(cam0_img.getvalue()) # 💾 Saving Cam 0 image like a boss!
|
240 |
+
st.session_state['cam0_file'] = filename # 🔄 Updating session state for Cam 0 file!
|
241 |
+
entry = f"Snapshot from Cam 0: {filename}" # 📝 History entry: Cam 0 snapshot recorded!
|
242 |
+
if entry not in st.session_state['history']:
|
243 |
+
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry] # 🧹 Cleaning and updating history!
|
244 |
+
st.image(Image.open(filename), caption="Camera 0", use_container_width=True) # 🖼️ Displaying the fresh Cam 0 image!
|
245 |
+
logger.info(f"Saved snapshot from Camera 0: {filename}") # 🔍 Logging: Cam 0 snapshot saved!
|
246 |
+
update_gallery() # 🔄 Refreshing gallery to show the new snap!
|
247 |
+
|
|
|
248 |
with cols[1]:
|
249 |
+
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") # 📷 Cam 1: Capture your best side!
|
250 |
if cam1_img:
|
251 |
+
filename = generate_filename("cam1") # 🏷️ Filename for Cam 1 snapshot generated!
|
252 |
+
if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']): os.remove(st.session_state['cam1_file']) # 🗑️ Out with the old Cam 1 snap!
|
253 |
+
with open(filename, "wb") as f: f.write(cam1_img.getvalue()) # 💾 Saving Cam 1 image like a pro!
|
254 |
+
st.session_state['cam1_file'] = filename # 🔄 Updating session state for Cam 1 file!
|
255 |
+
entry = f"Snapshot from Cam 1: {filename}" # 📝 History entry: Cam 1 snapshot recorded!
|
|
|
|
|
256 |
if entry not in st.session_state['history']:
|
257 |
+
st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry] # 🧹 Cleaning and updating history!
|
258 |
+
st.image(Image.open(filename), caption="Camera 1", use_container_width=True) # 🖼️ Displaying the fresh Cam 1 image!
|
259 |
+
logger.info(f"Saved snapshot from Camera 1: {filename}") # 🔍 Logging: Cam 1 snapshot saved!
|
260 |
+
update_gallery() # 🔄 Refreshing gallery to show the new snap!
|
261 |
|
262 |
# === Tab: Download PDFs ===
|
263 |
with tab_download:
|
264 |
+
st.header("Download PDFs 📥") # 📥 Header: Ready to snag PDFs like a digital ninja!
|
265 |
+
if st.button("Examples 📚"): # 📚 Button: Load up some scholarly URLs for instant fun!
|
266 |
+
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703", "https://arxiv.org/pdf/2408.11039", "https://arxiv.org/pdf/2109.10282", "https://arxiv.org/pdf/2112.10752", "https://arxiv.org/pdf/2308.11236", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2006.11239", "https://arxiv.org/pdf/2305.11207", "https://arxiv.org/pdf/2106.09685", "https://arxiv.org/pdf/2005.11401", "https://arxiv.org/pdf/2106.10504"]; st.session_state['pdf_urls'] = "\n".join(example_urls) # 📚 Examples loaded into session!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) # 📝 Text area: Paste your PDF URLs here—no commas needed!
|
269 |
+
if st.button("Robo-Download 🤖"): # 🤖 Button: Let Robo-Download flex its digital muscles!
|
270 |
+
urls = url_input.strip().split("\n"); progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); existing_pdfs = get_pdf_files() # 🚀 Setup: Preparing to download and track progress!
|
|
|
|
|
|
|
|
|
271 |
for idx, url in enumerate(urls):
|
272 |
if url:
|
273 |
+
output_path = pdf_url_to_filename(url); status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...") # 🔍 Fetching PDF: Checking out file name!
|
|
|
274 |
if output_path not in existing_pdfs:
|
275 |
if download_pdf(url, output_path):
|
276 |
+
file_size = os.path.getsize(output_path) # 📏 File size: Measured in bytes for bragging rights!
|
277 |
+
st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}") # 💾 Download success: File saved and logged!
|
278 |
+
entry = f"Downloaded PDF: {output_path} ({file_size} bytes)";
|
279 |
+
if entry not in st.session_state['history']: st.session_state['history'].append(entry) # 📝 History: Recording download details with file size!
|
280 |
+
st.session_state['asset_checkboxes'][output_path] = True # ✅ Marking the asset for further magic!
|
281 |
+
else: st.error(f"Failed to nab {url} 😿") # ❌ Oops: Download failed, no kitten cuddles here!
|
282 |
+
else: st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾"); st.session_state['downloaded_pdfs'][url] = output_path # 📂 Already downloaded: Avoiding duplicate work!
|
283 |
+
progress_bar.progress((idx + 1) / total_urls) # 📊 Progress: Moving the download needle forward!
|
284 |
+
status_text.text("Robo-Download complete! 🚀"); update_gallery() # 🎉 Finished: All PDFs downloaded and gallery refreshed!
|
285 |
+
|
286 |
+
mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode") # 🎛️ Selectbox: Choose your snapshot resolution!
|
287 |
+
if st.button("Snapshot Selected 📸"): # 📸 Button: Time to snap some PDF snapshots!
|
288 |
+
selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)] # 📄 Filter: Pick only the PDFs marked for snapshotting!
|
|
|
|
|
|
|
|
|
289 |
if selected_pdfs:
|
290 |
for pdf_path in selected_pdfs:
|
291 |
+
mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]; snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) # 🔄 Processing: Generate snapshots per selected mode!
|
292 |
+
for snapshot in snapshots: st.image(Image.open(snapshot), caption=snapshot, use_container_width=True); st.session_state['asset_checkboxes'][snapshot] = True # 🖼️ Display: Show each snapshot and mark it for potential SFT!
|
293 |
+
update_gallery() # 🔄 Refresh gallery: Let the new snapshots shine!
|
294 |
+
else: st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.") # ⚠️ Warning: No PDFs chosen—select some boxes to make magic happen!
|
|
|
|
|
|
|
|
|
295 |
|
296 |
# === Tab: Test OCR ===
|
297 |
with tab_ocr:
|
298 |
+
st.header("Test OCR 🔍") # 🔍 Header: Time to turn images into text—magic for your eyeballs!
|
299 |
+
all_files = get_gallery_files(); # 📂 Gathering all assets from the gallery!
|
300 |
if all_files:
|
301 |
+
if st.button("OCR All Assets 🚀"): # 🚀 Button: Blast OCR on every asset in one go!
|
302 |
+
full_text = "# OCR Results\n\n"; # 📝 Starting a full OCR report!
|
303 |
for file in all_files:
|
304 |
+
if file.endswith('.png'): image = Image.open(file) # 🖼️ PNG? Open image directly!
|
305 |
+
else:
|
306 |
+
doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 PDF? Grab a snapshot of the first page!
|
307 |
+
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt"); # 💾 Create a unique filename for the OCR text!
|
308 |
+
result = asyncio.run(process_ocr(image, output_file)); # 🤖 Run OCR asynchronously—non-blocking wizardry!
|
309 |
+
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"; # 📝 Append the OCR result to the full report!
|
310 |
+
entry = f"OCR Test: {file} -> {output_file}"; # 📝 Log this OCR operation!
|
311 |
+
if entry not in st.session_state['history']: st.session_state['history'].append(entry) # ✅ Update history if this entry is new!
|
312 |
+
md_output_file = f"full_ocr_{int(time.time())}.md"; # 📝 Generate a markdown filename for the full OCR report!
|
313 |
+
with open(md_output_file, "w") as f: f.write(full_text); # 💾 Write the full OCR report to disk!
|
314 |
+
st.success(f"Full OCR saved to {md_output_file}"); # 🎉 Success: Full OCR report is saved!
|
315 |
+
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # 🔗 Provide a download link for your OCR masterpiece!
|
316 |
+
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select"); # 🔍 Selectbox: Pick an asset for individual OCR!
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
if selected_file:
|
318 |
+
if selected_file.endswith('.png'): image = Image.open(selected_file) # 🖼️ Open the selected PNG image!
|
319 |
+
else:
|
320 |
+
doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 For PDFs, extract a snapshot from the first page!
|
321 |
+
st.image(image, caption="Input Image", use_container_width=True); # 🖼️ Display the selected asset for OCR review!
|
322 |
+
if st.button("Run OCR 🚀", key="ocr_run"): # 🚀 Button: Run OCR on the selected asset!
|
323 |
+
output_file = generate_filename("ocr_output", "txt"); st.session_state['processing']['ocr'] = True; # 💾 Generate output filename and flag processing!
|
324 |
+
result = asyncio.run(process_ocr(image, output_file)); # 🤖 Execute OCR asynchronously!
|
325 |
+
entry = f"OCR Test: {selected_file} -> {output_file}"; # 📝 Create a log entry for this OCR run!
|
326 |
+
if entry not in st.session_state['history']: st.session_state['history'].append(entry); # ✅ Update history if new!
|
327 |
+
st.text_area("OCR Result", result, height=200, key="ocr_result"); # 📄 Show the OCR result in a text area!
|
328 |
+
st.success(f"OCR output saved to {output_file}"); st.session_state['processing']['ocr'] = False # 🎉 Success: OCR result saved and processing flag reset!
|
329 |
+
if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"): # 📄 Button: Run OCR on every page of a PDF!
|
330 |
+
doc = fitz.open(selected_file); full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"; # 📝 Start a report for multi-page PDF OCR!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
for i in range(len(doc)):
|
332 |
+
pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Capture each page as an image!
|
333 |
+
output_file = generate_filename(f"ocr_page_{i}", "txt"); result = asyncio.run(process_ocr(image, output_file)); # 💾 Generate filename and process OCR for the page!
|
334 |
+
full_text += f"## Page {i + 1}\n\n{result}\n\n"; # 📝 Append the page's OCR result to the report!
|
335 |
+
entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"; # 📝 Log this page's OCR operation!
|
336 |
+
if entry not in st.session_state['history']: st.session_state['history'].append(entry) # ✅ Update history if this entry is new!
|
337 |
+
md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"; # 📝 Create a markdown filename for the full multi-page OCR report!
|
338 |
+
with open(md_output_file, "w") as f: f.write(full_text); # 💾 Write the full multi-page OCR report to disk!
|
339 |
+
st.success(f"Full OCR saved to {md_output_file}"); # 🎉 Success: Multi-page OCR report is saved!
|
340 |
+
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # 🔗 Provide a download link for the multi-page OCR report!
|
|
|
|
|
|
|
|
|
341 |
else:
|
342 |
+
st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: Your gallery is empty—capture or download some assets first!
|
343 |
|
344 |
# === Tab: Build Titan ===
|
345 |
with tab_build:
|
346 |
+
st.header("Build Titan 🌱") # 🌱 Header: Build your own Titan—tiny models, huge ambitions!
|
347 |
+
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") # 🔍 Choose your model flavor!
|
348 |
+
base_model = st.selectbox(
|
349 |
+
"Select Tiny Model",
|
350 |
+
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
|
351 |
+
else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
|
352 |
+
) # 🤖 Pick a tiny model based on your choice!
|
353 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") # 🏷️ Auto-generate a cool model name with a timestamp!
|
354 |
+
domain = st.text_input("Target Domain", "general") # 🎯 Specify your target domain (default: general)!
|
355 |
+
if st.button("Download Model ⬇️"): # ⬇️ Button: Download your model and get ready to unleash the Titan!
|
356 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
|
357 |
+
name=model_name, base_model=base_model, size="small", domain=domain
|
358 |
+
) # 📝 Create model configuration on the fly!
|
359 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() # 🔧 Instantiate the builder for your model type!
|
360 |
+
builder.load_model(base_model, config); builder.save_model(config.model_path) # 🚀 Load and save the model—instant Titan assembly!
|
361 |
+
st.session_state['builder'] = builder; st.session_state['model_loaded'] = True # ⚙️ Update session state: model is now loaded!
|
362 |
+
st.session_state['selected_model_type'] = model_type; st.session_state['selected_model'] = config.model_path # 🔑 Store your selection for posterity!
|
363 |
+
entry = f"Built {model_type} model: {model_name}" # 📝 Log the build event in history!
|
364 |
+
if entry not in st.session_state['history']: st.session_state['history'].append(entry)
|
365 |
+
st.success(f"Model downloaded and saved to {config.model_path}! 🎉"); st.rerun() # 🎉 Success: Titan built, now re-run to refresh the interface!
|
|
|
366 |
|
367 |
# === Tab: Test Image Gen ===
|
368 |
with tab_imggen:
|
369 |
+
st.header("Test Image Gen 🎨") # 🎨 Header: Time to get creative with AI image generation!
|
370 |
+
all_files = get_gallery_files() # 📂 Retrieve all gallery assets for selection.
|
371 |
if all_files:
|
372 |
+
selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select") # 🔍 Select an asset to spark creativity!
|
373 |
if selected_file:
|
374 |
+
if selected_file.endswith('.png'):
|
375 |
+
image = Image.open(selected_file) # 🖼️ Directly open PNG images!
|
376 |
else:
|
377 |
+
doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0));
|
378 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 For PDFs, extract the first page as an image!
|
379 |
+
st.image(image, caption="Reference Image", use_container_width=True) # 🖼️ Display the chosen asset as reference.
|
380 |
+
prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt") # ✍️ Enter a creative prompt to transform the image!
|
381 |
+
if st.button("Run Image Gen 🚀", key="gen_run"): # 🚀 Button: Ignite the image generator!
|
382 |
+
output_file = generate_filename("gen_output", "png"); st.session_state['processing']['gen'] = True # 💾 Create output filename and flag processing status.
|
383 |
+
result = asyncio.run(process_image_gen(prompt, output_file)) # 🤖 Run the async image generation—non-blocking magic in action!
|
384 |
+
entry = f"Image Gen Test: {prompt} -> {output_file}" # 📝 Log the image generation event!
|
385 |
+
if entry not in st.session_state['history']: st.session_state['history'].append(entry)
|
386 |
+
st.image(result, caption="Generated Image", use_container_width=True) # 🖼️ Showcase the newly generated image!
|
387 |
+
st.success(f"Image saved to {output_file}"); st.session_state['processing']['gen'] = False # 🎉 Success: Your masterpiece is saved and processing is complete!
|
|
|
|
|
|
|
|
|
|
|
388 |
else:
|
389 |
+
st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: No assets available—capture or download some first!
|
390 |
+
update_gallery() # 🔄 Refresh the gallery to display any updates!
|
391 |
|
392 |
# === Updated Tab: PDF Process ===
|
393 |
with tab_pdf_process:
|
394 |
+
st.header("PDF Process") # 📄 Header: Ready to transform your PDFs into text with GPT magic!
|
395 |
+
st.subheader("Upload PDFs for GPT-based text extraction") # 🚀 Subheader: Upload your PDFs and let the AI do the reading!
|
396 |
+
gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Pick your AI wizard—more vision-capable models may join the party!
|
397 |
+
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model") # 🔍 Select your GPT model and let it work its charm!
|
398 |
+
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level") # 🎚️ Detail Level: Fine-tune your extraction’s precision!
|
399 |
+
uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader") # 📤 Uploader: Drag & drop your PDFs for processing!
|
400 |
+
view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode") # 👀 View Mode: Choose single or double page snapshots!
|
401 |
+
|
402 |
+
if st.button("Process Uploaded PDFs", key="process_pdfs"): # ⚙️ Button: Kick off the PDF processing extravaganza!
|
403 |
+
combined_text = "" # 📝 Initialize a blank slate for the GPT output!
|
404 |
+
for pdf_file in uploaded_pdfs: # 🔄 Loop through each uploaded PDF file!
|
405 |
+
pdf_bytes = pdf_file.read() # 📥 Read the PDF bytes into memory!
|
406 |
+
temp_pdf_path = f"temp_{pdf_file.name}" # 🏷️ Create a temporary filename for processing!
|
407 |
+
with open(temp_pdf_path, "wb") as f: f.write(pdf_bytes) # 💾 Write the PDF to a temporary file!
|
408 |
try:
|
409 |
+
doc = fitz.open(temp_pdf_path) # 📄 Open the temporary PDF document!
|
410 |
+
st.write(f"Processing {pdf_file.name} with {len(doc)} pages") # 🔍 Log: Display file name and page count!
|
411 |
+
if view_mode == "Single Page": # 📑 Single Page Mode: Process each page separately!
|
412 |
for i, page in enumerate(doc):
|
413 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); # 🎞️ Create a high-res pixmap of the page!
|
414 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Convert the pixmap to an image!
|
415 |
+
st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # 🖼️ Display the page image!
|
416 |
+
gpt_text = process_image_with_prompt(
|
417 |
+
img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
|
418 |
+
); # 🤖 Run GPT to extract text from the image!
|
419 |
+
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # 📝 Append the result to the combined text!
|
420 |
+
else: # 📄 Double Page Mode: Process pages in pairs!
|
421 |
+
pages = list(doc); # 🔢 Convert document pages to a list!
|
422 |
for i in range(0, len(pages), 2):
|
423 |
+
if i+1 < len(pages): # 👯 Process two pages if available!
|
424 |
+
pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples); # 🖼️ Process first page!
|
425 |
+
pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples); # 🖼️ Process second page!
|
426 |
+
total_width = img1.width + img2.width; max_height = max(img1.height, img2.height); # 📏 Calculate dimensions for the combined image!
|
427 |
+
combined_img = Image.new("RGB", (total_width, max_height)); # 🖼️ Create a blank canvas for the two pages!
|
428 |
+
combined_img.paste(img1, (0, 0)); combined_img.paste(img2, (img1.width, 0)); # 🎨 Paste the images side by side!
|
429 |
+
st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}"); # 🖼️ Display the combined image!
|
430 |
+
gpt_text = process_image_with_prompt(
|
431 |
+
combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
|
432 |
+
); # 🤖 Extract text from the combined image!
|
433 |
+
combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"; # 📝 Append the result to the combined text!
|
434 |
+
else: # 🔹 If there's an odd page out, process it solo!
|
435 |
+
pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Process the single remaining page!
|
436 |
+
st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # 🖼️ Display the solo page image!
|
437 |
+
gpt_text = process_image_with_prompt(
|
438 |
+
img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
|
439 |
+
); # 🤖 Run GPT extraction on the solo page!
|
440 |
+
combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # 📝 Append the result!
|
441 |
+
doc.close(); # ✅ Close the PDF document to free up resources!
|
442 |
+
except Exception as e:
|
443 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}"); # ⚠️ Error: Report any issues during processing!
|
444 |
+
finally:
|
445 |
+
os.remove(temp_pdf_path); # 🧹 Cleanup: Remove the temporary PDF file!
|
446 |
+
output_filename = generate_filename("processed_pdf", "md"); # 🏷️ Generate a unique filename for the Markdown output!
|
447 |
+
with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text); # 💾 Write the combined GPT text to the Markdown file!
|
448 |
+
st.success(f"PDF processing complete. MD file saved as {output_filename}"); # 🎉 Success: Notify the user of completion!
|
449 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True); # 🔗 Provide a download link for your processed file!
|
|
|
|
|
450 |
|
451 |
# === Updated Tab: Image Process ===
|
452 |
with tab_image_process:
|
453 |
+
st.header("Image Process") # 🖼️ Header: Transform images into text with GPT magic!
|
454 |
+
st.subheader("Upload Images for GPT-based OCR") # 🚀 Subheader: Let your images speak for themselves!
|
455 |
+
gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Choose your image wizard!
|
456 |
+
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model") # 🔍 Pick your GPT model for image processing!
|
457 |
+
detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level") # 🎚️ Detail Level: Set your extraction precision!
|
458 |
+
prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt") # ✍️ Prompt: Tell GPT what to extract!
|
459 |
+
uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader") # 📤 Uploader: Drag & drop your images here!
|
460 |
+
if st.button("Process Uploaded Images", key="process_images"): # 🚀 Button: Fire up the image processing!
|
461 |
+
combined_text = "" # 📝 Initialize combined text output!
|
462 |
for img_file in uploaded_images:
|
463 |
try:
|
464 |
+
img = Image.open(img_file); st.image(img, caption=img_file.name) # 📸 Display each uploaded image!
|
465 |
+
gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level) # 🤖 Process image with GPT magic!
|
466 |
+
combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n" # 📝 Append GPT output with file header!
|
467 |
+
except Exception as e: st.error(f"Error processing image {img_file.name}: {str(e)}") # ⚠️ Oops: Report errors if any!
|
468 |
+
output_filename = generate_filename("processed_image", "md") # 💾 Generate a unique filename for the Markdown output!
|
469 |
+
with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text) # 📝 Save the combined GPT output!
|
470 |
+
st.success(f"Image processing complete. MD file saved as {output_filename}") # 🎉 Success: Notify the user!
|
471 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True) # 🔗 Provide a download link!
|
|
|
|
|
|
|
472 |
|
473 |
# === Updated Tab: MD Gallery ===
|
474 |
with tab_md_gallery:
|
475 |
+
st.header("MD Gallery and GPT Processing") # 📚 Header: Where markdown meets GPT wizardry!
|
476 |
+
gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Pick your processing partner!
|
477 |
+
selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model") # 🔍 Select a GPT model for MD processing!
|
478 |
+
md_files = sorted(glob.glob("*.md")) # 📂 Gather all Markdown files in the directory!
|
479 |
if md_files:
|
480 |
+
st.subheader("Individual File Processing") # 🔍 Subheader: Process files one at a time!
|
481 |
+
cols = st.columns(2) # 🧩 Set up two columns for a balanced view!
|
482 |
for idx, md_file in enumerate(md_files):
|
483 |
with cols[idx % 2]:
|
484 |
+
st.write(md_file) # 📄 Show the filename!
|
485 |
+
if st.button(f"Process {md_file}", key=f"process_md_{md_file}"): # 🚀 Button: Process this file!
|
486 |
try:
|
487 |
+
with open(md_file, "r", encoding="utf-8") as f: content = f.read() # 📖 Read file content!
|
488 |
+
prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12" # ✍️ Prompt: Summarize with style!
|
489 |
+
result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model) # 🤖 Let GPT work its magic!
|
490 |
+
st.markdown(result_text) # 🎨 Display the GPT output!
|
491 |
+
output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md") # 💾 Create a unique output filename!
|
492 |
+
with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # 📝 Save the processed content!
|
493 |
+
st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True) # 🔗 Provide a download link!
|
494 |
+
except Exception as e: st.error(f"Error processing {md_file}: {str(e)}") # ⚠️ Report errors if processing fails!
|
495 |
+
st.subheader("Batch Processing") # 📚 Subheader: Combine and process multiple files at once!
|
496 |
+
st.write("Select MD files to combine and process:") # 🔍 Instruction: Choose files for batch processing!
|
497 |
+
selected_md = {} # 🗂️ Initialize selection dictionary!
|
498 |
+
for md_file in md_files: selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}") # ✅ Create checkboxes for each file!
|
499 |
+
batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt") # ✍️ Batch prompt: Set your summarization style!
|
500 |
+
if st.button("Process Selected MD Files", key="process_batch_md"): # 🚀 Button: Process the selected files!
|
501 |
+
combined_content = "" # 📝 Initialize combined content string!
|
|
|
|
|
|
|
|
|
502 |
for md_file, selected in selected_md.items():
|
503 |
if selected:
|
504 |
try:
|
505 |
+
with open(md_file, "r", encoding="utf-8") as f: combined_content += f"\n## {md_file}\n" + f.read() + "\n" # 📄 Append each selected file's content!
|
506 |
+
except Exception as e: st.error(f"Error reading {md_file}: {str(e)}") # ⚠️ Report errors if file reading fails!
|
|
|
|
|
507 |
if combined_content:
|
508 |
+
result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model) # 🤖 Process the batch with GPT!
|
509 |
+
st.markdown(result_text) # 🎨 Display the combined GPT output!
|
510 |
+
output_filename = generate_filename("batch_processed_md", "md") # 💾 Generate a unique filename for the batch output!
|
511 |
+
with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # 📝 Save the batch processed text!
|
512 |
+
st.success(f"Batch processing complete. MD file saved as {output_filename}") # 🎉 Notify success!
|
513 |
+
st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True) # 🔗 Provide a download link!
|
|
|
514 |
else:
|
515 |
+
st.warning("No MD files selected.") # ⚠️ Warning: No files were chosen for batch processing!
|
516 |
else:
|
517 |
+
st.warning("No MD files found.") # ⚠️ Warning: Your gallery is empty—no markdown files available!
|