awacke1 commited on
Commit
f7a0429
·
verified ·
1 Parent(s): 8bd86ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +383 -587
app.py CHANGED
@@ -1,38 +1,37 @@
1
- #!/usr/bin/env python3
2
- import os
3
- import glob
4
  import base64
5
- import time
6
- import shutil
7
- import zipfile
8
- import re
9
  import logging
10
- import asyncio
11
- import random
12
- from io import BytesIO
13
- from datetime import datetime
14
  import pytz
15
- from dataclasses import dataclass
16
- from typing import Optional
17
-
 
18
  import streamlit as st
19
- import pandas as pd
20
  import torch
21
- import fitz
22
- import requests
23
- import aiofiles
24
- from PIL import Image
25
  from diffusers import StableDiffusionPipeline
 
 
 
26
  from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
27
- from openai import OpenAI # Updated import for new API
28
 
29
- # --- OpenAI Setup ---
30
  client = OpenAI(
31
  api_key=os.getenv('OPENAI_API_KEY'),
32
  organization=os.getenv('OPENAI_ORG_ID')
33
  )
34
 
35
- # --- Logging ---
36
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
37
  logger = logging.getLogger(__name__)
38
  log_records = []
@@ -41,7 +40,7 @@ class LogCaptureHandler(logging.Handler):
41
  log_records.append(record)
42
  logger.addHandler(LogCaptureHandler())
43
 
44
- # --- Streamlit Page Config ---
45
  st.set_page_config(
46
  page_title="AI Vision & SFT Titans 🚀",
47
  page_icon="🤖",
@@ -54,32 +53,20 @@ st.set_page_config(
54
  }
55
  )
56
 
57
- # --- Session State Defaults ---
58
- if 'history' not in st.session_state:
59
- st.session_state['history'] = []
60
- if 'builder' not in st.session_state:
61
- st.session_state['builder'] = None
62
- if 'model_loaded' not in st.session_state:
63
- st.session_state['model_loaded'] = False
64
- if 'processing' not in st.session_state:
65
- st.session_state['processing'] = {}
66
- if 'asset_checkboxes' not in st.session_state:
67
- st.session_state['asset_checkboxes'] = {}
68
- if 'downloaded_pdfs' not in st.session_state:
69
- st.session_state['downloaded_pdfs'] = {}
70
- if 'unique_counter' not in st.session_state:
71
- st.session_state['unique_counter'] = 0
72
- if 'selected_model_type' not in st.session_state:
73
- st.session_state['selected_model_type'] = "Causal LM"
74
- if 'selected_model' not in st.session_state:
75
- st.session_state['selected_model'] = "None"
76
- if 'cam0_file' not in st.session_state:
77
- st.session_state['cam0_file'] = None
78
- if 'cam1_file' not in st.session_state:
79
- st.session_state['cam1_file'] = None
80
 
81
- # --- Model & Diffusion DataClasses ---
82
- @dataclass
83
  class ModelConfig:
84
  name: str
85
  base_model: str
@@ -87,44 +74,43 @@ class ModelConfig:
87
  domain: Optional[str] = None
88
  model_type: str = "causal_lm"
89
  @property
90
- def model_path(self):
91
- return f"models/{self.name}"
92
 
93
- @dataclass
94
  class DiffusionConfig:
95
  name: str
96
  base_model: str
97
  size: str
98
  domain: Optional[str] = None
99
  @property
100
- def model_path(self):
101
- return f"diffusion_models/{self.name}"
102
-
103
- # --- Model Builders ---
104
- class ModelBuilder:
105
- def __init__(self):
106
- self.config = None
107
- self.model = None
108
- self.tokenizer = None
109
- self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂",
110
- "Training complete! Time for a binary coffee break. "]
111
- def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
112
- with st.spinner(f"Loading {model_path}... "):
 
 
 
113
  self.model = AutoModelForCausalLM.from_pretrained(model_path)
114
  self.tokenizer = AutoTokenizer.from_pretrained(model_path)
115
- if self.tokenizer.pad_token is None:
116
- self.tokenizer.pad_token = self.tokenizer.eos_token
117
- if config:
118
- self.config = config
119
- self.model.to("cuda" if torch.cuda.is_available() else "cpu")
120
- st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
121
  return self
122
- def save_model(self, path: str):
123
- with st.spinner("Saving model... 💾"):
124
- os.makedirs(os.path.dirname(path), exist_ok=True)
125
- self.model.save_pretrained(path)
126
- self.tokenizer.save_pretrained(path)
127
- st.success(f"Model saved at {path}! ✅")
128
 
129
  class DiffusionBuilder:
130
  def __init__(self):
@@ -145,577 +131,387 @@ class DiffusionBuilder:
145
  def generate(self, prompt: str):
146
  return self.pipeline(prompt, num_inference_steps=20).images[0]
147
 
148
- # --- Utility Functions ---
149
- def generate_filename(sequence, ext="png"):
150
- timestamp = time.strftime("%d%m%Y%H%M%S")
151
- return f"{sequence}_{timestamp}.{ext}"
152
-
153
- def pdf_url_to_filename(url):
154
- safe_name = re.sub(r'[<>:"/\\|?*]', '_', url)
155
- return f"{safe_name}.pdf"
156
-
157
- def get_download_link(file_path, mime_type="application/pdf", label="Download"):
158
- with open(file_path, 'rb') as f:
159
- data = f.read()
160
- b64 = base64.b64encode(data).decode()
161
- return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
162
-
163
- def zip_directory(directory_path, zip_path):
164
- with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
165
- for root, _, files in os.walk(directory_path):
166
- for file in files:
167
- zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
168
-
169
- def get_model_files(model_type="causal_lm"):
170
- path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
171
- dirs = [d for d in glob.glob(path) if os.path.isdir(d)]
172
- return dirs if dirs else ["None"]
173
-
174
- def get_gallery_files(file_types=["png", "pdf"]):
175
- return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
176
-
177
- def get_pdf_files():
178
- return sorted(glob.glob("*.pdf"))
179
 
 
180
  def download_pdf(url, output_path):
 
 
 
 
 
 
 
 
 
181
  try:
182
- response = requests.get(url, stream=True, timeout=10)
183
- if response.status_code == 200:
184
- with open(output_path, "wb") as f:
185
- for chunk in response.iter_content(chunk_size=8192):
186
- f.write(chunk)
187
- return True
188
- except requests.RequestException as e:
189
- logger.error(f"Failed to download {url}: {e}")
190
- return False
191
-
192
- # --- Original PDF Snapshot & OCR Functions ---
193
- async def process_pdf_snapshot(pdf_path, mode="single"):
194
- start_time = time.time()
195
- status = st.empty()
196
- status.text(f"Processing PDF Snapshot ({mode})... (0s)")
197
- try:
198
- doc = fitz.open(pdf_path)
199
- output_files = []
200
- if mode == "single":
201
- page = doc[0]
202
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
203
- output_file = generate_filename("single", "png")
204
- pix.save(output_file)
205
- output_files.append(output_file)
206
- elif mode == "twopage":
207
- for i in range(min(2, len(doc))):
208
- page = doc[i]
209
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
210
- output_file = generate_filename(f"twopage_{i}", "png")
211
- pix.save(output_file)
212
- output_files.append(output_file)
213
- elif mode == "allpages":
214
- for i in range(len(doc)):
215
- page = doc[i]
216
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
217
- output_file = generate_filename(f"page_{i}", "png")
218
- pix.save(output_file)
219
- output_files.append(output_file)
220
- doc.close()
221
- elapsed = int(time.time() - start_time)
222
- status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
223
- update_gallery()
224
- return output_files
225
- except Exception as e:
226
- status.error(f"Failed to process PDF: {str(e)}")
227
- return []
228
-
229
- async def process_ocr(image, output_file):
230
- start_time = time.time()
231
- status = st.empty()
232
- status.text("Processing GOT-OCR2_0... (0s)")
233
- tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
234
- model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
235
- temp_file = f"temp_{int(time.time())}.png"
236
- image.save(temp_file)
237
- result = model.chat(tokenizer, temp_file, ocr_type='ocr')
238
- os.remove(temp_file)
239
- elapsed = int(time.time() - start_time)
240
- status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
241
- async with aiofiles.open(output_file, "w") as f:
242
- await f.write(result)
243
- update_gallery()
244
- return result
245
-
246
- async def process_image_gen(prompt, output_file):
247
- start_time = time.time()
248
- status = st.empty()
249
- status.text("Processing Image Gen... (0s)")
250
- if st.session_state['builder'] and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline:
251
- pipeline = st.session_state['builder'].pipeline
252
- else:
253
- pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
254
- gen_image = pipeline(prompt, num_inference_steps=20).images[0]
255
- elapsed = int(time.time() - start_time)
256
- status.text(f"Image Gen completed in {elapsed}s!")
257
- gen_image.save(output_file)
258
- update_gallery()
259
- return gen_image
260
-
261
- # --- Updated Function: Process an image (PIL) with a custom prompt using GPT ---
262
- def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
263
- buffered = BytesIO()
264
- image.save(buffered, format="PNG")
265
- img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
266
- messages = [{
267
- "role": "user",
268
- "content": [
269
- {"type": "text", "text": prompt},
270
- {
271
- "type": "image_url",
272
- "image_url": {
273
- "url": f"data:image/png;base64,{img_str}",
274
- "detail": detail # Added detail parameter
275
- }
276
- }
277
- ]
278
- }]
279
- try:
280
- response = client.chat.completions.create(
281
- model=model,
282
- messages=messages,
283
- max_tokens=300
284
- )
285
- return response.choices[0].message.content
286
- except Exception as e:
287
- return f"Error processing image with GPT: {str(e)}"
288
-
289
- # --- Updated Function: Process text with GPT ---
290
- def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
291
- messages = [{"role": "user", "content": prompt + "\n\n" + text}]
292
  try:
293
- response = client.chat.completions.create(
294
- model=model,
295
- messages=messages,
296
- max_tokens=300
297
- )
298
- return response.choices[0].message.content
299
- except Exception as e:
300
- return f"Error processing text with GPT: {str(e)}"
301
-
302
- # --- Sidebar Setup ---
303
- st.sidebar.subheader("Gallery Settings")
304
- if 'gallery_size' not in st.session_state:
305
- st.session_state['gallery_size'] = 2 # Default value
306
- st.session_state['gallery_size'] = st.sidebar.slider(
307
- "Gallery Size",
308
- 1, 10, st.session_state['gallery_size'],
309
- key="gallery_size_slider"
310
- )
311
-
312
- # --- Updated Gallery Function ---
313
- def update_gallery():
314
- all_files = get_gallery_files()
315
- if all_files:
316
- st.sidebar.subheader("Asset Gallery 📸📖")
317
- cols = st.sidebar.columns(2)
318
- for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
319
- with cols[idx % 2]:
320
- st.session_state['unique_counter'] += 1
321
- unique_id = st.session_state['unique_counter']
322
- if file.endswith('.png'):
323
- st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
324
- else:
325
- doc = fitz.open(file)
326
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
327
- img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
328
- st.image(img, caption=os.path.basename(file), use_container_width=True)
329
- doc.close()
330
- checkbox_key = f"asset_{file}_{unique_id}"
331
- st.session_state['asset_checkboxes'][file] = st.checkbox(
332
- "Use for SFT/Input",
333
- value=st.session_state['asset_checkboxes'].get(file, False),
334
- key=checkbox_key
335
- )
336
- mime_type = "image/png" if file.endswith('.png') else "application/pdf"
337
- st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True)
338
- if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"):
339
- os.remove(file)
340
- st.session_state['asset_checkboxes'].pop(file, None)
341
- st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨")
342
- st.rerun()
343
-
344
- update_gallery()
345
 
346
- # --- Sidebar Logs & History ---
347
- st.sidebar.subheader("Action Logs 📜")
348
- with st.sidebar:
349
- for record in log_records:
350
- st.write(f"{record.asctime} - {record.levelname} - {record.message}")
351
- st.sidebar.subheader("History 📜")
352
- with st.sidebar:
353
- for entry in st.session_state['history']:
354
- st.write(entry)
355
-
356
- # --- Create Tabs ---
357
- tabs = st.tabs([
358
- "Camera Snap 📷",
359
- "Download PDFs 📥",
360
- "Test OCR 🔍",
361
- "Build Titan 🌱",
362
- "Test Image Gen 🎨",
363
- "PDF Process 📄",
364
- "Image Process 🖼️",
365
- "MD Gallery 📚"
366
- ])
367
- (tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs
368
-
369
- # === Tab: Camera Snap ===
370
  with tab_camera:
371
- st.header("Camera Snap 📷")
372
- st.subheader("Single Capture")
373
- cols = st.columns(2)
 
374
  with cols[0]:
375
- cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
376
  if cam0_img:
377
- filename = generate_filename("cam0")
378
- if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']):
379
- os.remove(st.session_state['cam0_file'])
380
- with open(filename, "wb") as f:
381
- f.write(cam0_img.getvalue())
382
- st.session_state['cam0_file'] = filename
383
- entry = f"Snapshot from Cam 0: {filename}"
384
- if entry not in st.session_state['history']:
385
- st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry]
386
- st.image(Image.open(filename), caption="Camera 0", use_container_width=True)
387
- logger.info(f"Saved snapshot from Camera 0: {filename}")
388
- update_gallery()
389
  with cols[1]:
390
- cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
391
  if cam1_img:
392
- filename = generate_filename("cam1")
393
- if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']):
394
- os.remove(st.session_state['cam1_file'])
395
- with open(filename, "wb") as f:
396
- f.write(cam1_img.getvalue())
397
- st.session_state['cam1_file'] = filename
398
- entry = f"Snapshot from Cam 1: {filename}"
399
  if entry not in st.session_state['history']:
400
- st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry]
401
- st.image(Image.open(filename), caption="Camera 1", use_container_width=True)
402
- logger.info(f"Saved snapshot from Camera 1: {filename}")
403
- update_gallery()
404
 
405
  # === Tab: Download PDFs ===
406
  with tab_download:
407
- st.header("Download PDFs 📥")
408
- if st.button("Examples 📚"):
409
- example_urls = [
410
- "https://arxiv.org/pdf/2308.03892",
411
- "https://arxiv.org/pdf/1912.01703",
412
- "https://arxiv.org/pdf/2408.11039",
413
- "https://arxiv.org/pdf/2109.10282",
414
- "https://arxiv.org/pdf/2112.10752",
415
- "https://arxiv.org/pdf/2308.11236",
416
- "https://arxiv.org/pdf/1706.03762",
417
- "https://arxiv.org/pdf/2006.11239",
418
- "https://arxiv.org/pdf/2305.11207",
419
- "https://arxiv.org/pdf/2106.09685",
420
- "https://arxiv.org/pdf/2005.11401",
421
- "https://arxiv.org/pdf/2106.10504"
422
- ]
423
- st.session_state['pdf_urls'] = "\n".join(example_urls)
424
 
425
- url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
426
- if st.button("Robo-Download 🤖"):
427
- urls = url_input.strip().split("\n")
428
- progress_bar = st.progress(0)
429
- status_text = st.empty()
430
- total_urls = len(urls)
431
- existing_pdfs = get_pdf_files()
432
  for idx, url in enumerate(urls):
433
  if url:
434
- output_path = pdf_url_to_filename(url)
435
- status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...")
436
  if output_path not in existing_pdfs:
437
  if download_pdf(url, output_path):
438
- st.session_state['downloaded_pdfs'][url] = output_path
439
- logger.info(f"Downloaded PDF from {url} to {output_path}")
440
- entry = f"Downloaded PDF: {output_path}"
441
- if entry not in st.session_state['history']:
442
- st.session_state['history'].append(entry)
443
- st.session_state['asset_checkboxes'][output_path] = True
444
- else:
445
- st.error(f"Failed to nab {url} 😿")
446
- else:
447
- st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾")
448
- st.session_state['downloaded_pdfs'][url] = output_path
449
- progress_bar.progress((idx + 1) / total_urls)
450
- status_text.text("Robo-Download complete! 🚀")
451
- update_gallery()
452
- mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode")
453
- if st.button("Snapshot Selected 📸"):
454
- selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)]
455
  if selected_pdfs:
456
  for pdf_path in selected_pdfs:
457
- mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]
458
- snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key))
459
- for snapshot in snapshots:
460
- st.image(Image.open(snapshot), caption=snapshot, use_container_width=True)
461
- st.session_state['asset_checkboxes'][snapshot] = True
462
- update_gallery()
463
- else:
464
- st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.")
465
 
466
  # === Tab: Test OCR ===
467
  with tab_ocr:
468
- st.header("Test OCR 🔍")
469
- all_files = get_gallery_files()
470
  if all_files:
471
- if st.button("OCR All Assets 🚀"):
472
- full_text = "# OCR Results\n\n"
473
  for file in all_files:
474
- if file.endswith('.png'):
475
- image = Image.open(file)
476
- else:
477
- doc = fitz.open(file)
478
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
479
- image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
480
- doc.close()
481
- output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
482
- result = asyncio.run(process_ocr(image, output_file))
483
- full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
484
- entry = f"OCR Test: {file} -> {output_file}"
485
- if entry not in st.session_state['history']:
486
- st.session_state['history'].append(entry)
487
- md_output_file = f"full_ocr_{int(time.time())}.md"
488
- with open(md_output_file, "w") as f:
489
- f.write(full_text)
490
- st.success(f"Full OCR saved to {md_output_file}")
491
- st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
492
- selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
493
  if selected_file:
494
- if selected_file.endswith('.png'):
495
- image = Image.open(selected_file)
496
- else:
497
- doc = fitz.open(selected_file)
498
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
499
- image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
500
- doc.close()
501
- st.image(image, caption="Input Image", use_container_width=True)
502
- if st.button("Run OCR 🚀", key="ocr_run"):
503
- output_file = generate_filename("ocr_output", "txt")
504
- st.session_state['processing']['ocr'] = True
505
- result = asyncio.run(process_ocr(image, output_file))
506
- entry = f"OCR Test: {selected_file} -> {output_file}"
507
- if entry not in st.session_state['history']:
508
- st.session_state['history'].append(entry)
509
- st.text_area("OCR Result", result, height=200, key="ocr_result")
510
- st.success(f"OCR output saved to {output_file}")
511
- st.session_state['processing']['ocr'] = False
512
- if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"):
513
- doc = fitz.open(selected_file)
514
- full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"
515
  for i in range(len(doc)):
516
- pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
517
- image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
518
- output_file = generate_filename(f"ocr_page_{i}", "txt")
519
- result = asyncio.run(process_ocr(image, output_file))
520
- full_text += f"## Page {i + 1}\n\n{result}\n\n"
521
- entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"
522
- if entry not in st.session_state['history']:
523
- st.session_state['history'].append(entry)
524
- md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"
525
- with open(md_output_file, "w") as f:
526
- f.write(full_text)
527
- st.success(f"Full OCR saved to {md_output_file}")
528
- st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
529
  else:
530
- st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!")
531
 
532
  # === Tab: Build Titan ===
533
  with tab_build:
534
- st.header("Build Titan 🌱")
535
- model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
536
- base_model = st.selectbox("Select Tiny Model",
537
- ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else
538
- ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
539
- model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
540
- domain = st.text_input("Target Domain", "general")
541
- if st.button("Download Model ⬇️"):
542
- config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain)
543
- builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
544
- builder.load_model(base_model, config)
545
- builder.save_model(config.model_path)
546
- st.session_state['builder'] = builder
547
- st.session_state['model_loaded'] = True
548
- st.session_state['selected_model_type'] = model_type
549
- st.session_state['selected_model'] = config.model_path
550
- entry = f"Built {model_type} model: {model_name}"
551
- if entry not in st.session_state['history']:
552
- st.session_state['history'].append(entry)
553
- st.success(f"Model downloaded and saved to {config.model_path}! 🎉")
554
- st.rerun()
555
 
556
  # === Tab: Test Image Gen ===
557
  with tab_imggen:
558
- st.header("Test Image Gen 🎨")
559
- all_files = get_gallery_files()
560
  if all_files:
561
- selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select")
562
  if selected_file:
563
- if selected_file.endswith('.png'):
564
- image = Image.open(selected_file)
565
  else:
566
- doc = fitz.open(selected_file)
567
- pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
568
- image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
569
- doc.close()
570
- st.image(image, caption="Reference Image", use_container_width=True)
571
- prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt")
572
- if st.button("Run Image Gen 🚀", key="gen_run"):
573
- output_file = generate_filename("gen_output", "png")
574
- st.session_state['processing']['gen'] = True
575
- result = asyncio.run(process_image_gen(prompt, output_file))
576
- entry = f"Image Gen Test: {prompt} -> {output_file}"
577
- if entry not in st.session_state['history']:
578
- st.session_state['history'].append(entry)
579
- st.image(result, caption="Generated Image", use_container_width=True)
580
- st.success(f"Image saved to {output_file}")
581
- st.session_state['processing']['gen'] = False
582
  else:
583
- st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!")
584
- update_gallery()
585
 
586
  # === Updated Tab: PDF Process ===
587
  with tab_pdf_process:
588
- st.header("PDF Process")
589
- st.subheader("Upload PDFs for GPT-based text extraction")
590
- gpt_models = ["gpt-4o", "gpt-4o-mini"] # Add more vision-capable models as needed
591
- selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model")
592
- detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level")
593
- uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader")
594
- view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode")
595
- if st.button("Process Uploaded PDFs", key="process_pdfs"):
596
- combined_text = ""
597
- for pdf_file in uploaded_pdfs:
598
- pdf_bytes = pdf_file.read()
599
- temp_pdf_path = f"temp_{pdf_file.name}"
600
- with open(temp_pdf_path, "wb") as f:
601
- f.write(pdf_bytes)
602
  try:
603
- doc = fitz.open(temp_pdf_path)
604
- st.write(f"Processing {pdf_file.name} with {len(doc)} pages")
605
- if view_mode == "Single Page":
606
  for i, page in enumerate(doc):
607
- pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
608
- img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
609
- st.image(img, caption=f"{pdf_file.name} Page {i+1}")
610
- gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
611
- combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
612
- else: # Double Page
613
- pages = list(doc)
 
 
614
  for i in range(0, len(pages), 2):
615
- if i+1 < len(pages):
616
- pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
617
- img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
618
- pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
619
- img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
620
- total_width = img1.width + img2.width
621
- max_height = max(img1.height, img2.height)
622
- combined_img = Image.new("RGB", (total_width, max_height))
623
- combined_img.paste(img1, (0, 0))
624
- combined_img.paste(img2, (img1.width, 0))
625
- st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}")
626
- gpt_text = process_image_with_prompt(combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
627
- combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"
628
- else:
629
- pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
630
- img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
631
- st.image(img, caption=f"{pdf_file.name} Page {i+1}")
632
- gpt_text = process_image_with_prompt(img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level)
633
- combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"
634
- doc.close()
635
- except Exception as e:
636
- st.error(f"Error processing {pdf_file.name}: {str(e)}")
637
- finally:
638
- os.remove(temp_pdf_path)
639
- output_filename = generate_filename("processed_pdf", "md")
640
- with open(output_filename, "w", encoding="utf-8") as f:
641
- f.write(combined_text)
642
- st.success(f"PDF processing complete. MD file saved as {output_filename}")
643
- st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True)
644
 
645
  # === Updated Tab: Image Process ===
646
  with tab_image_process:
647
- st.header("Image Process")
648
- st.subheader("Upload Images for GPT-based OCR")
649
- gpt_models = ["gpt-4o", "gpt-4o-mini"] # Add more vision-capable models as needed
650
- selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model")
651
- detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level")
652
- prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt")
653
- uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader")
654
- if st.button("Process Uploaded Images", key="process_images"):
655
- combined_text = ""
656
  for img_file in uploaded_images:
657
  try:
658
- img = Image.open(img_file)
659
- st.image(img, caption=img_file.name)
660
- gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level)
661
- combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n"
662
- except Exception as e:
663
- st.error(f"Error processing image {img_file.name}: {str(e)}")
664
- output_filename = generate_filename("processed_image", "md")
665
- with open(output_filename, "w", encoding="utf-8") as f:
666
- f.write(combined_text)
667
- st.success(f"Image processing complete. MD file saved as {output_filename}")
668
- st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True)
669
 
670
  # === Updated Tab: MD Gallery ===
671
  with tab_md_gallery:
672
- st.header("MD Gallery and GPT Processing")
673
- gpt_models = ["gpt-4o", "gpt-4o-mini"] # Add more vision-capable models as needed
674
- selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model")
675
- md_files = sorted(glob.glob("*.md"))
676
  if md_files:
677
- st.subheader("Individual File Processing")
678
- cols = st.columns(2)
679
  for idx, md_file in enumerate(md_files):
680
  with cols[idx % 2]:
681
- st.write(md_file)
682
- if st.button(f"Process {md_file}", key=f"process_md_{md_file}"):
683
  try:
684
- with open(md_file, "r", encoding="utf-8") as f:
685
- content = f.read()
686
- prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12"
687
- result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model)
688
- st.markdown(result_text)
689
- output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md")
690
- with open(output_filename, "w", encoding="utf-8") as f:
691
- f.write(result_text)
692
- st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True)
693
- except Exception as e:
694
- st.error(f"Error processing {md_file}: {str(e)}")
695
- st.subheader("Batch Processing")
696
- st.write("Select MD files to combine and process:")
697
- selected_md = {}
698
- for md_file in md_files:
699
- selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}")
700
- batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt")
701
- if st.button("Process Selected MD Files", key="process_batch_md"):
702
- combined_content = ""
703
  for md_file, selected in selected_md.items():
704
  if selected:
705
  try:
706
- with open(md_file, "r", encoding="utf-8") as f:
707
- combined_content += f"\n## {md_file}\n" + f.read() + "\n"
708
- except Exception as e:
709
- st.error(f"Error reading {md_file}: {str(e)}")
710
  if combined_content:
711
- result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model)
712
- st.markdown(result_text)
713
- output_filename = generate_filename("batch_processed_md", "md")
714
- with open(output_filename, "w", encoding="utf-8") as f:
715
- f.write(result_text)
716
- st.success(f"Batch processing complete. MD file saved as {output_filename}")
717
- st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True)
718
  else:
719
- st.warning("No MD files selected.")
720
  else:
721
- st.warning("No MD files found.")
 
1
+ import aiofiles
2
+ import asyncio
 
3
  import base64
4
+ import fitz
5
+ import glob
 
 
6
  import logging
7
+ import os
8
+ import pandas as pd
 
 
9
  import pytz
10
+ import random
11
+ import re
12
+ import requests
13
+ import shutil
14
  import streamlit as st
15
+ import time
16
  import torch
17
+ import zipfile
18
+
19
+ from dataclasses import dataclass
20
+ from datetime import datetime
21
  from diffusers import StableDiffusionPipeline
22
+ from io import BytesIO
23
+ from openai import OpenAI
24
+ from PIL import Image
25
  from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
26
+ from typing import Optional
27
 
28
+ # 🤖 OpenAI wizardry: Summon your API magic!
29
  client = OpenAI(
30
  api_key=os.getenv('OPENAI_API_KEY'),
31
  organization=os.getenv('OPENAI_ORG_ID')
32
  )
33
 
34
+ # 📜 Logging activated: Capturing chaos and calm!
35
  logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
36
  logger = logging.getLogger(__name__)
37
  log_records = []
 
40
  log_records.append(record)
41
  logger.addHandler(LogCaptureHandler())
42
 
43
+ # 🎨 Streamlit styling: Designing a cosmic interface!
44
  st.set_page_config(
45
  page_title="AI Vision & SFT Titans 🚀",
46
  page_icon="🤖",
 
53
  }
54
  )
55
 
56
+ st.session_state.setdefault('history', []) # 🌱 History: starting fresh if empty!
57
+ st.session_state.setdefault('builder', None) # 🛠️ Builder: set up the builder if it's missing!
58
+ st.session_state.setdefault('model_loaded', False) # 🚦 Model Loaded: mark as not loaded by default!
59
+ st.session_state.setdefault('processing', {}) # Processing: initialize processing state as an empty dict!
60
+ st.session_state.setdefault('asset_checkboxes', {}) # ✅ Asset Checkboxes: default to an empty dictionary!
61
+ st.session_state.setdefault('downloaded_pdfs', {}) # 📄 Downloaded PDFs: start with no PDFs downloaded!
62
+ st.session_state.setdefault('unique_counter', 0) # 🔢 Unique Counter: initialize the counter to zero!
63
+ st.session_state.setdefault('selected_model_type', "Causal LM") # 🧠 Selected Model Type: default to "Causal LM"!
64
+ st.session_state.setdefault('selected_model', "None") # 🤖 Selected Model: set to "None" if not already set!
65
+ st.session_state.setdefault('cam0_file', None) # 📸 Cam0 File: no file loaded by default!
66
+ st.session_state.setdefault('cam1_file', None) # 📸 Cam1 File: no file loaded by default!
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+
69
+ @dataclass # 🎨 ModelConfig: A blueprint for model configurations!
70
  class ModelConfig:
71
  name: str
72
  base_model: str
 
74
  domain: Optional[str] = None
75
  model_type: str = "causal_lm"
76
  @property
77
+ def model_path(self): return f"models/{self.name}" # 🚀 Model Path: Home base for brilliance!
 
78
 
79
+ @dataclass # 🎨 DiffusionConfig: Where diffusion magic takes shape!
80
  class DiffusionConfig:
81
  name: str
82
  base_model: str
83
  size: str
84
  domain: Optional[str] = None
85
  @property
86
+ def model_path(self): return f"diffusion_models/{self.name}" # 🚀 Diffusion Path: Let the diffusion begin!
87
+
88
+ class ModelBuilder: # 🔧 ModelBuilder: Crafting AI wonders with wit!
89
+ def __init__(self): # 🚀 Initialize: Setting up the AI factory!
90
+ self.config = None # No config yet—waiting for genius!
91
+ self.model = None # Model not built until the magic happens!
92
+ self.tokenizer = None # Tokenizer: Ready to speak in AI!
93
+ self.jokes = [ # 🤣 Jokes to keep the circuits laughing!
94
+ "Why did the AI go to therapy? Too many layers to unpack! 😂",
95
+ "Training complete! Time for a binary coffee break. ",
96
+ "I told my neural network a joke; it couldn't stop dropping bits! 🤖",
97
+ "I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄",
98
+ "Debugging my code is like a stand-up routine—always a series of exceptions! 😆"
99
+ ]
100
+ def load_model(self, model_path: str, config: Optional[ModelConfig] = None): # 🔄 load_model: Booting up genius!
101
+ with st.spinner(f"Loading {model_path}... ⏳"): # ⏳ Spinner: Genius loading...
102
  self.model = AutoModelForCausalLM.from_pretrained(model_path)
103
  self.tokenizer = AutoTokenizer.from_pretrained(model_path)
104
+ if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # 🔧 Fix pad token if missing!
105
+ if config: self.config = config # 🛠️ Config loaded—setting the stage!
106
+ self.model.to("cuda" if torch.cuda.is_available() else "cpu") # 💻 Deploying the model to its device!
107
+ st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") # 🎉 Success: Model is now in orbit!
 
 
108
  return self
109
+ def save_model(self, path: str): # 💾 save_model: Securing your masterpiece!
110
+ with st.spinner("Saving model... 💾"): # ⏳ Spinner: Saving brilliance...
111
+ os.makedirs(os.path.dirname(path), exist_ok=True); self.model.save_pretrained(path); self.tokenizer.save_pretrained(path) # 📂 Directory magic: Creating and saving!
112
+ st.success(f"Model saved at {path}! ✅") # ✅ Success: Your model is safely stored!
113
+
 
114
 
115
  class DiffusionBuilder:
116
  def __init__(self):
 
131
  def generate(self, prompt: str):
132
  return self.pipeline(prompt, num_inference_steps=20).images[0]
133
 
134
+ def generate_filename(sequence, ext="png"): return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}" # Generate filename with timestamp magic!
135
+ def pdf_url_to_filename(url): return f"{re.sub(r'[<>:\"/\\|?*]', '_', url)}.pdf" # 📄 Convert URL to a safe PDF filename – no hackers allowed!
136
+ def get_download_link(file_path, mime_type="application/pdf", label="Download"): return f'<a href="data:{mime_type};base64,{base64.b64encode(open(file_path, "rb").read()).decode()}" download="{os.path.basename(file_path)}">{label}</a>' # 🔗 Create a download link – click it like it's hot!
137
+ def zip_directory(directory_path, zip_path):
138
+ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: [zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) for root, _, files in os.walk(directory_path) for file in files] # 🎁 Zip directory: Packing files faster than Santa on Christmas Eve!
139
+ def get_model_files(model_type="causal_lm"): return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"] # 📂 Get model files: Hunting directories like a pro!
140
+ def get_gallery_files(file_types=["png", "pdf"]): return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) # 🖼️ Get gallery files: Finding art in a digital haystack!
141
+ def get_pdf_files(): return sorted(glob.glob("*.pdf")) # 📄 Get PDF files: Sorted and served – no paper cuts here!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
+ # 📥 Download PDF: Delivering docs faster than a caffeinated courier!
144
  def download_pdf(url, output_path):
145
+ try:
146
+ response = requests.get(url, stream=True, timeout=10); [open(output_path, "wb").write(chunk) for chunk in response.iter_content(chunk_size=8192)] if response.status_code == 200 else None; ret = True if response.status_code == 200 else False
147
+ except requests.RequestException as e:
148
+ logger.error(f"Failed to download {url}: {e}"); ret = False
149
+ return ret
150
+
151
+ # 📚 Async PDF Snapshot: Snap your PDF pages without blocking—juggle pages like a ninja! 🥷
152
+ async def process_pdf_snapshot(pdf_path, mode="single"):
153
+ start_time = time.time(); status = st.empty(); status.text(f"Processing PDF Snapshot ({mode})... (0s)")
154
  try:
155
+ doc = fitz.open(pdf_path); output_files = []
156
+ if mode == "single": page = doc[0]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename("single", "png"); pix.save(output_file); output_files.append(output_file)
157
+ elif mode == "twopage":
158
+ for i in range(min(2, len(doc))): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"twopage_{i}", "png"); pix.save(output_file); output_files.append(output_file)
159
+ elif mode == "allpages":
160
+ for i in range(len(doc)): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"page_{i}", "png"); pix.save(output_file); output_files.append(output_file)
161
+ doc.close(); elapsed = int(time.time() - start_time); status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!"); update_gallery(); return output_files
162
+ except Exception as e: status.error(f"Failed to process PDF: {str(e)}"); return []
163
+
164
+ # 😎 Async OCR: Convert images to text while your app keeps on groovin'—no blocking, just rocking! 🎸
165
+ async def process_ocr(image, output_file):
166
+ start_time = time.time(); status = st.empty(); status.text("Processing GOT-OCR2_0... (0s)")
167
+ tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True); model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
168
+ temp_file = f"temp_{int(time.time())}.png"; image.save(temp_file)
169
+ result = model.chat(tokenizer, temp_file, ocr_type='ocr'); os.remove(temp_file)
170
+ elapsed = int(time.time() - start_time); status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
171
+ async with aiofiles.open(output_file, "w") as f: await f.write(result)
172
+ update_gallery(); return result
173
+
174
+ # 🧞 Async Image Gen: Your image genie—wishing up pictures while the event loop keeps the party going! 🎉
175
+ async def process_image_gen(prompt, output_file):
176
+ start_time = time.time(); status = st.empty(); status.text("Processing Image Gen... (0s)")
177
+ pipeline = st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
178
+ gen_image = pipeline(prompt, num_inference_steps=20).images[0]; elapsed = int(time.time() - start_time)
179
+ status.text(f"Image Gen completed in {elapsed}s!"); gen_image.save(output_file); update_gallery(); return gen_image
180
+
181
+ # 🖼️ GPT-Image Interpreter: Turning pixels into prose!
182
+ def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
183
+ buffered = BytesIO(); image.save(buffered, format="PNG") # 💾 Save the image in-memory as PNG—no hard drives harmed!
184
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") # 🔐 Encode image data in Base64 for secure, inline transmission!
185
+ messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}] # 💬 Build the GPT conversation with your prompt and image!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
  try:
187
+ response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # 🤖 Invoke GPT’s magic and return its dazzling output!
188
+ except Exception as e: return f"Error processing image with GPT: {str(e)}" # ⚠️ Oops—GPT encountered a snag, so we catch and report the error!
189
+
190
+ # 📝 GPT-Text Alchemist: Merging your prompt and text into digital gold!
191
+ def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
192
+ messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] # 🛠️ Constructing the conversation input like a master wordsmith!
193
+ try:
194
+ response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # 🤖 Summon GPT’s wisdom and return its brilliant answer!
195
+ except Exception as e: return f"Error processing text with GPT: {str(e)}" # ⚠️ Oops, GPT stumbled—catching and reporting the error!
196
+
197
+ st.sidebar.subheader("Gallery Settings") # 🎨 Sidebar Gallery: Customize your creative space!
198
+ st.session_state.setdefault('gallery_size', 2) # 🔧 Setting default gallery size to 2 if it's missing!
199
+ st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") # 🎚️ Slide to adjust your gallery size and bring balance to your art!
200
+
201
+ # 📸 Gallery Updater: Making your assets dazzle and disappear faster than a magician's rabbit! 🐇✨
202
+ def update_gallery():
203
+ all_files = get_gallery_files() # 🔍 Grab all gallery files like a digital treasure hunt!
204
+ if all_files: # ✅ If assets are found, let the show begin!
205
+ st.sidebar.subheader("Asset Gallery 📸📖"); cols = st.sidebar.columns(2) # 🎨 Set up a stylish 2-column layout in the sidebar!
206
+ for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): # 🖼️ Loop through your favorite files, limited by gallery size!
207
+ with cols[idx % 2]: # 🔄 Alternate columns—because balance is key (and funny)!
208
+ st.session_state['unique_counter'] += 1; unique_id = st.session_state['unique_counter'] # 🚀 Increment your asset counter—every asset gets its moment in the spotlight!
209
+ if file.endswith('.png'): st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) # 🖼️ Display the image like a masterpiece!
210
+ else: # 📄 For PDFs, we snap their first page like a paparazzo!
211
+ doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(img, caption=os.path.basename(file), use_container_width=True); doc.close()
212
+ checkbox_key = f"asset_{file}_{unique_id}" # 🔑 Create a unique key—because every asset deserves VIP treatment!
213
+ st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key) # ✅ Checkbox: Pick your asset for magic (or SFT)!
214
+ mime_type = "image/png" if file.endswith('.png') else "application/pdf" # 📎 Determine MIME type—like sorting your socks, but cooler!
215
+ st.markdown(get_download_link(file, mime_type, "Snag It! 📥"), unsafe_allow_html=True) # 🔗 Provide a download link—grab your asset faster than a flash sale!
216
+ if st.button("Zap It! 🗑️", key=f"delete_{file}_{unique_id}"): # ⚡ "Zap It!" button: Because sometimes you just gotta make stuff disappear!
217
+ os.remove(file); st.session_state['asset_checkboxes'].pop(file, None); st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! 💨"); st.rerun() # 💥 Delete the file and refresh the gallery—poof, it's gone!
218
+ update_gallery() # 🎉 Launch the gallery update—let the art party commence! (Joke: Why did the asset cross the road? To get zapped on the other side! 😆)
219
+
220
+ st.sidebar.subheader("Action Logs 📜") # 📝 Action Logs: Where our system whispers its secrets!
221
+ with st.sidebar: [st.write(f"{record.asctime} - {record.levelname} - {record.message}") for record in log_records] # 📚 Loop through log records and display them like diary entries!
222
+
223
+ st.sidebar.subheader("History 📜") # 🕰️ History: A walk down memory lane, one log at a time!
224
+ with st.sidebar: [st.write(entry) for entry in st.session_state['history']] # ⏳ Display every historic moment with style!
225
+
226
+ tabs = st.tabs(["Camera Snap 📷", "Download PDFs 📥", "Test OCR 🔍", "Build Titan 🌱", "Test Image Gen 🎨", "PDF Process 📄", "Image Process 🖼️", "MD Gallery 📚"]) # 🎭 Tabs: Navigate your AI universe like a boss!
227
+ (tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs # 🚀 Unpack the tabs and get ready to explore—because even tabs need to party!
 
 
 
 
 
 
 
 
 
 
 
228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
  with tab_camera:
230
+ st.header("Camera Snap 📷") # 🎥 Header: Let’s capture those Kodak moments!
231
+ st.subheader("Single Capture") # 📸 Subheader: One snap at a time, no double exposure!
232
+ cols = st.columns(2) # 🧩 Creating two columns for double-camera action!
233
+
234
  with cols[0]:
235
+ cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") # 📷 Cam 0: Say cheese!
236
  if cam0_img:
237
+ filename = generate_filename("cam0") # 🏷️ Filename for Cam 0 snapshot generated!
238
+ if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']): os.remove(st.session_state['cam0_file']) # 🗑️ Out with the old Cam 0 snap!
239
+ with open(filename, "wb") as f: f.write(cam0_img.getvalue()) # 💾 Saving Cam 0 image like a boss!
240
+ st.session_state['cam0_file'] = filename # 🔄 Updating session state for Cam 0 file!
241
+ entry = f"Snapshot from Cam 0: {filename}" # 📝 History entry: Cam 0 snapshot recorded!
242
+ if entry not in st.session_state['history']:
243
+ st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry] # 🧹 Cleaning and updating history!
244
+ st.image(Image.open(filename), caption="Camera 0", use_container_width=True) # 🖼️ Displaying the fresh Cam 0 image!
245
+ logger.info(f"Saved snapshot from Camera 0: {filename}") # 🔍 Logging: Cam 0 snapshot saved!
246
+ update_gallery() # 🔄 Refreshing gallery to show the new snap!
247
+
 
248
  with cols[1]:
249
+ cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") # 📷 Cam 1: Capture your best side!
250
  if cam1_img:
251
+ filename = generate_filename("cam1") # 🏷️ Filename for Cam 1 snapshot generated!
252
+ if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']): os.remove(st.session_state['cam1_file']) # 🗑️ Out with the old Cam 1 snap!
253
+ with open(filename, "wb") as f: f.write(cam1_img.getvalue()) # 💾 Saving Cam 1 image like a pro!
254
+ st.session_state['cam1_file'] = filename # 🔄 Updating session state for Cam 1 file!
255
+ entry = f"Snapshot from Cam 1: {filename}" # 📝 History entry: Cam 1 snapshot recorded!
 
 
256
  if entry not in st.session_state['history']:
257
+ st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry] # 🧹 Cleaning and updating history!
258
+ st.image(Image.open(filename), caption="Camera 1", use_container_width=True) # 🖼️ Displaying the fresh Cam 1 image!
259
+ logger.info(f"Saved snapshot from Camera 1: {filename}") # 🔍 Logging: Cam 1 snapshot saved!
260
+ update_gallery() # 🔄 Refreshing gallery to show the new snap!
261
 
262
  # === Tab: Download PDFs ===
263
  with tab_download:
264
+ st.header("Download PDFs 📥") # 📥 Header: Ready to snag PDFs like a digital ninja!
265
+ if st.button("Examples 📚"): # 📚 Button: Load up some scholarly URLs for instant fun!
266
+ example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703", "https://arxiv.org/pdf/2408.11039", "https://arxiv.org/pdf/2109.10282", "https://arxiv.org/pdf/2112.10752", "https://arxiv.org/pdf/2308.11236", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2006.11239", "https://arxiv.org/pdf/2305.11207", "https://arxiv.org/pdf/2106.09685", "https://arxiv.org/pdf/2005.11401", "https://arxiv.org/pdf/2106.10504"]; st.session_state['pdf_urls'] = "\n".join(example_urls) # 📚 Examples loaded into session!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
+ url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) # 📝 Text area: Paste your PDF URLs here—no commas needed!
269
+ if st.button("Robo-Download 🤖"): # 🤖 Button: Let Robo-Download flex its digital muscles!
270
+ urls = url_input.strip().split("\n"); progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); existing_pdfs = get_pdf_files() # 🚀 Setup: Preparing to download and track progress!
 
 
 
 
271
  for idx, url in enumerate(urls):
272
  if url:
273
+ output_path = pdf_url_to_filename(url); status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...") # 🔍 Fetching PDF: Checking out file name!
 
274
  if output_path not in existing_pdfs:
275
  if download_pdf(url, output_path):
276
+ file_size = os.path.getsize(output_path) # 📏 File size: Measured in bytes for bragging rights!
277
+ st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}") # 💾 Download success: File saved and logged!
278
+ entry = f"Downloaded PDF: {output_path} ({file_size} bytes)";
279
+ if entry not in st.session_state['history']: st.session_state['history'].append(entry) # 📝 History: Recording download details with file size!
280
+ st.session_state['asset_checkboxes'][output_path] = True # ✅ Marking the asset for further magic!
281
+ else: st.error(f"Failed to nab {url} 😿") # ❌ Oops: Download failed, no kitten cuddles here!
282
+ else: st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾"); st.session_state['downloaded_pdfs'][url] = output_path # 📂 Already downloaded: Avoiding duplicate work!
283
+ progress_bar.progress((idx + 1) / total_urls) # 📊 Progress: Moving the download needle forward!
284
+ status_text.text("Robo-Download complete! 🚀"); update_gallery() # 🎉 Finished: All PDFs downloaded and gallery refreshed!
285
+
286
+ mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode") # 🎛️ Selectbox: Choose your snapshot resolution!
287
+ if st.button("Snapshot Selected 📸"): # 📸 Button: Time to snap some PDF snapshots!
288
+ selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)] # 📄 Filter: Pick only the PDFs marked for snapshotting!
 
 
 
 
289
  if selected_pdfs:
290
  for pdf_path in selected_pdfs:
291
+ mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode]; snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) # 🔄 Processing: Generate snapshots per selected mode!
292
+ for snapshot in snapshots: st.image(Image.open(snapshot), caption=snapshot, use_container_width=True); st.session_state['asset_checkboxes'][snapshot] = True # 🖼️ Display: Show each snapshot and mark it for potential SFT!
293
+ update_gallery() # 🔄 Refresh gallery: Let the new snapshots shine!
294
+ else: st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.") # ⚠️ Warning: No PDFs chosen—select some boxes to make magic happen!
 
 
 
 
295
 
296
  # === Tab: Test OCR ===
297
  with tab_ocr:
298
+ st.header("Test OCR 🔍") # 🔍 Header: Time to turn images into text—magic for your eyeballs!
299
+ all_files = get_gallery_files(); # 📂 Gathering all assets from the gallery!
300
  if all_files:
301
+ if st.button("OCR All Assets 🚀"): # 🚀 Button: Blast OCR on every asset in one go!
302
+ full_text = "# OCR Results\n\n"; # 📝 Starting a full OCR report!
303
  for file in all_files:
304
+ if file.endswith('.png'): image = Image.open(file) # 🖼️ PNG? Open image directly!
305
+ else:
306
+ doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 PDF? Grab a snapshot of the first page!
307
+ output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt"); # 💾 Create a unique filename for the OCR text!
308
+ result = asyncio.run(process_ocr(image, output_file)); # 🤖 Run OCR asynchronously—non-blocking wizardry!
309
+ full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"; # 📝 Append the OCR result to the full report!
310
+ entry = f"OCR Test: {file} -> {output_file}"; # 📝 Log this OCR operation!
311
+ if entry not in st.session_state['history']: st.session_state['history'].append(entry) # ✅ Update history if this entry is new!
312
+ md_output_file = f"full_ocr_{int(time.time())}.md"; # 📝 Generate a markdown filename for the full OCR report!
313
+ with open(md_output_file, "w") as f: f.write(full_text); # 💾 Write the full OCR report to disk!
314
+ st.success(f"Full OCR saved to {md_output_file}"); # 🎉 Success: Full OCR report is saved!
315
+ st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # 🔗 Provide a download link for your OCR masterpiece!
316
+ selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select"); # 🔍 Selectbox: Pick an asset for individual OCR!
 
 
 
 
 
 
317
  if selected_file:
318
+ if selected_file.endswith('.png'): image = Image.open(selected_file) # 🖼️ Open the selected PNG image!
319
+ else:
320
+ doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 For PDFs, extract a snapshot from the first page!
321
+ st.image(image, caption="Input Image", use_container_width=True); # 🖼️ Display the selected asset for OCR review!
322
+ if st.button("Run OCR 🚀", key="ocr_run"): # 🚀 Button: Run OCR on the selected asset!
323
+ output_file = generate_filename("ocr_output", "txt"); st.session_state['processing']['ocr'] = True; # 💾 Generate output filename and flag processing!
324
+ result = asyncio.run(process_ocr(image, output_file)); # 🤖 Execute OCR asynchronously!
325
+ entry = f"OCR Test: {selected_file} -> {output_file}"; # 📝 Create a log entry for this OCR run!
326
+ if entry not in st.session_state['history']: st.session_state['history'].append(entry); # Update history if new!
327
+ st.text_area("OCR Result", result, height=200, key="ocr_result"); # 📄 Show the OCR result in a text area!
328
+ st.success(f"OCR output saved to {output_file}"); st.session_state['processing']['ocr'] = False # 🎉 Success: OCR result saved and processing flag reset!
329
+ if selected_file.endswith('.pdf') and st.button("OCR All Pages 🚀", key="ocr_all_pages"): # 📄 Button: Run OCR on every page of a PDF!
330
+ doc = fitz.open(selected_file); full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"; # 📝 Start a report for multi-page PDF OCR!
 
 
 
 
 
 
 
 
331
  for i in range(len(doc)):
332
+ pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Capture each page as an image!
333
+ output_file = generate_filename(f"ocr_page_{i}", "txt"); result = asyncio.run(process_ocr(image, output_file)); # 💾 Generate filename and process OCR for the page!
334
+ full_text += f"## Page {i + 1}\n\n{result}\n\n"; # 📝 Append the page's OCR result to the report!
335
+ entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"; # 📝 Log this page's OCR operation!
336
+ if entry not in st.session_state['history']: st.session_state['history'].append(entry) # ✅ Update history if this entry is new!
337
+ md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"; # 📝 Create a markdown filename for the full multi-page OCR report!
338
+ with open(md_output_file, "w") as f: f.write(full_text); # 💾 Write the full multi-page OCR report to disk!
339
+ st.success(f"Full OCR saved to {md_output_file}"); # 🎉 Success: Multi-page OCR report is saved!
340
+ st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # 🔗 Provide a download link for the multi-page OCR report!
 
 
 
 
341
  else:
342
+ st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: Your gallery is empty—capture or download some assets first!
343
 
344
  # === Tab: Build Titan ===
345
  with tab_build:
346
+ st.header("Build Titan 🌱") # 🌱 Header: Build your own Titan—tiny models, huge ambitions!
347
+ model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") # 🔍 Choose your model flavor!
348
+ base_model = st.selectbox(
349
+ "Select Tiny Model",
350
+ ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM"
351
+ else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]
352
+ ) # 🤖 Pick a tiny model based on your choice!
353
+ model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") # 🏷️ Auto-generate a cool model name with a timestamp!
354
+ domain = st.text_input("Target Domain", "general") # 🎯 Specify your target domain (default: general)!
355
+ if st.button("Download Model ⬇️"): # ⬇️ Button: Download your model and get ready to unleash the Titan!
356
+ config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(
357
+ name=model_name, base_model=base_model, size="small", domain=domain
358
+ ) # 📝 Create model configuration on the fly!
359
+ builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() # 🔧 Instantiate the builder for your model type!
360
+ builder.load_model(base_model, config); builder.save_model(config.model_path) # 🚀 Load and save the model—instant Titan assembly!
361
+ st.session_state['builder'] = builder; st.session_state['model_loaded'] = True # ⚙️ Update session state: model is now loaded!
362
+ st.session_state['selected_model_type'] = model_type; st.session_state['selected_model'] = config.model_path # 🔑 Store your selection for posterity!
363
+ entry = f"Built {model_type} model: {model_name}" # 📝 Log the build event in history!
364
+ if entry not in st.session_state['history']: st.session_state['history'].append(entry)
365
+ st.success(f"Model downloaded and saved to {config.model_path}! 🎉"); st.rerun() # 🎉 Success: Titan built, now re-run to refresh the interface!
 
366
 
367
  # === Tab: Test Image Gen ===
368
  with tab_imggen:
369
+ st.header("Test Image Gen 🎨") # 🎨 Header: Time to get creative with AI image generation!
370
+ all_files = get_gallery_files() # 📂 Retrieve all gallery assets for selection.
371
  if all_files:
372
+ selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select") # 🔍 Select an asset to spark creativity!
373
  if selected_file:
374
+ if selected_file.endswith('.png'):
375
+ image = Image.open(selected_file) # 🖼️ Directly open PNG images!
376
  else:
377
+ doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0));
378
+ image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # 📄 For PDFs, extract the first page as an image!
379
+ st.image(image, caption="Reference Image", use_container_width=True) # 🖼️ Display the chosen asset as reference.
380
+ prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt") # ✍️ Enter a creative prompt to transform the image!
381
+ if st.button("Run Image Gen 🚀", key="gen_run"): # 🚀 Button: Ignite the image generator!
382
+ output_file = generate_filename("gen_output", "png"); st.session_state['processing']['gen'] = True # 💾 Create output filename and flag processing status.
383
+ result = asyncio.run(process_image_gen(prompt, output_file)) # 🤖 Run the async image generation—non-blocking magic in action!
384
+ entry = f"Image Gen Test: {prompt} -> {output_file}" # 📝 Log the image generation event!
385
+ if entry not in st.session_state['history']: st.session_state['history'].append(entry)
386
+ st.image(result, caption="Generated Image", use_container_width=True) # 🖼️ Showcase the newly generated image!
387
+ st.success(f"Image saved to {output_file}"); st.session_state['processing']['gen'] = False # 🎉 Success: Your masterpiece is saved and processing is complete!
 
 
 
 
 
388
  else:
389
+ st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: No assets available—capture or download some first!
390
+ update_gallery() # 🔄 Refresh the gallery to display any updates!
391
 
392
  # === Updated Tab: PDF Process ===
393
  with tab_pdf_process:
394
+ st.header("PDF Process") # 📄 Header: Ready to transform your PDFs into text with GPT magic!
395
+ st.subheader("Upload PDFs for GPT-based text extraction") # 🚀 Subheader: Upload your PDFs and let the AI do the reading!
396
+ gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Pick your AI wizard—more vision-capable models may join the party!
397
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model") # 🔍 Select your GPT model and let it work its charm!
398
+ detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level") # 🎚️ Detail Level: Fine-tune your extraction’s precision!
399
+ uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader") # 📤 Uploader: Drag & drop your PDFs for processing!
400
+ view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode") # 👀 View Mode: Choose single or double page snapshots!
401
+
402
+ if st.button("Process Uploaded PDFs", key="process_pdfs"): # ⚙️ Button: Kick off the PDF processing extravaganza!
403
+ combined_text = "" # 📝 Initialize a blank slate for the GPT output!
404
+ for pdf_file in uploaded_pdfs: # 🔄 Loop through each uploaded PDF file!
405
+ pdf_bytes = pdf_file.read() # 📥 Read the PDF bytes into memory!
406
+ temp_pdf_path = f"temp_{pdf_file.name}" # 🏷️ Create a temporary filename for processing!
407
+ with open(temp_pdf_path, "wb") as f: f.write(pdf_bytes) # 💾 Write the PDF to a temporary file!
408
  try:
409
+ doc = fitz.open(temp_pdf_path) # 📄 Open the temporary PDF document!
410
+ st.write(f"Processing {pdf_file.name} with {len(doc)} pages") # 🔍 Log: Display file name and page count!
411
+ if view_mode == "Single Page": # 📑 Single Page Mode: Process each page separately!
412
  for i, page in enumerate(doc):
413
+ pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); # 🎞️ Create a high-res pixmap of the page!
414
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Convert the pixmap to an image!
415
+ st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # 🖼️ Display the page image!
416
+ gpt_text = process_image_with_prompt(
417
+ img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
418
+ ); # 🤖 Run GPT to extract text from the image!
419
+ combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # 📝 Append the result to the combined text!
420
+ else: # 📄 Double Page Mode: Process pages in pairs!
421
+ pages = list(doc); # 🔢 Convert document pages to a list!
422
  for i in range(0, len(pages), 2):
423
+ if i+1 < len(pages): # 👯 Process two pages if available!
424
+ pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples); # 🖼️ Process first page!
425
+ pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples); # 🖼️ Process second page!
426
+ total_width = img1.width + img2.width; max_height = max(img1.height, img2.height); # 📏 Calculate dimensions for the combined image!
427
+ combined_img = Image.new("RGB", (total_width, max_height)); # 🖼️ Create a blank canvas for the two pages!
428
+ combined_img.paste(img1, (0, 0)); combined_img.paste(img2, (img1.width, 0)); # 🎨 Paste the images side by side!
429
+ st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}"); # 🖼️ Display the combined image!
430
+ gpt_text = process_image_with_prompt(
431
+ combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
432
+ ); # 🤖 Extract text from the combined image!
433
+ combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"; # 📝 Append the result to the combined text!
434
+ else: # 🔹 If there's an odd page out, process it solo!
435
+ pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # 🖼️ Process the single remaining page!
436
+ st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # 🖼️ Display the solo page image!
437
+ gpt_text = process_image_with_prompt(
438
+ img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level
439
+ ); # 🤖 Run GPT extraction on the solo page!
440
+ combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # 📝 Append the result!
441
+ doc.close(); # Close the PDF document to free up resources!
442
+ except Exception as e:
443
+ st.error(f"Error processing {pdf_file.name}: {str(e)}"); # ⚠️ Error: Report any issues during processing!
444
+ finally:
445
+ os.remove(temp_pdf_path); # 🧹 Cleanup: Remove the temporary PDF file!
446
+ output_filename = generate_filename("processed_pdf", "md"); # 🏷️ Generate a unique filename for the Markdown output!
447
+ with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text); # 💾 Write the combined GPT text to the Markdown file!
448
+ st.success(f"PDF processing complete. MD file saved as {output_filename}"); # 🎉 Success: Notify the user of completion!
449
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True); # 🔗 Provide a download link for your processed file!
 
 
450
 
451
  # === Updated Tab: Image Process ===
452
  with tab_image_process:
453
+ st.header("Image Process") # 🖼️ Header: Transform images into text with GPT magic!
454
+ st.subheader("Upload Images for GPT-based OCR") # 🚀 Subheader: Let your images speak for themselves!
455
+ gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Choose your image wizard!
456
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model") # 🔍 Pick your GPT model for image processing!
457
+ detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level") # 🎚️ Detail Level: Set your extraction precision!
458
+ prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt") # ✍️ Prompt: Tell GPT what to extract!
459
+ uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader") # 📤 Uploader: Drag & drop your images here!
460
+ if st.button("Process Uploaded Images", key="process_images"): # 🚀 Button: Fire up the image processing!
461
+ combined_text = "" # 📝 Initialize combined text output!
462
  for img_file in uploaded_images:
463
  try:
464
+ img = Image.open(img_file); st.image(img, caption=img_file.name) # 📸 Display each uploaded image!
465
+ gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level) # 🤖 Process image with GPT magic!
466
+ combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n" # 📝 Append GPT output with file header!
467
+ except Exception as e: st.error(f"Error processing image {img_file.name}: {str(e)}") # ⚠️ Oops: Report errors if any!
468
+ output_filename = generate_filename("processed_image", "md") # 💾 Generate a unique filename for the Markdown output!
469
+ with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text) # 📝 Save the combined GPT output!
470
+ st.success(f"Image processing complete. MD file saved as {output_filename}") # 🎉 Success: Notify the user!
471
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True) # 🔗 Provide a download link!
 
 
 
472
 
473
  # === Updated Tab: MD Gallery ===
474
  with tab_md_gallery:
475
+ st.header("MD Gallery and GPT Processing") # 📚 Header: Where markdown meets GPT wizardry!
476
+ gpt_models = ["gpt-4o", "gpt-4o-mini"] # 🤖 GPT Models: Pick your processing partner!
477
+ selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model") # 🔍 Select a GPT model for MD processing!
478
+ md_files = sorted(glob.glob("*.md")) # 📂 Gather all Markdown files in the directory!
479
  if md_files:
480
+ st.subheader("Individual File Processing") # 🔍 Subheader: Process files one at a time!
481
+ cols = st.columns(2) # 🧩 Set up two columns for a balanced view!
482
  for idx, md_file in enumerate(md_files):
483
  with cols[idx % 2]:
484
+ st.write(md_file) # 📄 Show the filename!
485
+ if st.button(f"Process {md_file}", key=f"process_md_{md_file}"): # 🚀 Button: Process this file!
486
  try:
487
+ with open(md_file, "r", encoding="utf-8") as f: content = f.read() # 📖 Read file content!
488
+ prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12" # ✍️ Prompt: Summarize with style!
489
+ result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model) # 🤖 Let GPT work its magic!
490
+ st.markdown(result_text) # 🎨 Display the GPT output!
491
+ output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md") # 💾 Create a unique output filename!
492
+ with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # 📝 Save the processed content!
493
+ st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True) # 🔗 Provide a download link!
494
+ except Exception as e: st.error(f"Error processing {md_file}: {str(e)}") # ⚠️ Report errors if processing fails!
495
+ st.subheader("Batch Processing") # 📚 Subheader: Combine and process multiple files at once!
496
+ st.write("Select MD files to combine and process:") # 🔍 Instruction: Choose files for batch processing!
497
+ selected_md = {} # 🗂️ Initialize selection dictionary!
498
+ for md_file in md_files: selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}") # ✅ Create checkboxes for each file!
499
+ batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt") # ✍️ Batch prompt: Set your summarization style!
500
+ if st.button("Process Selected MD Files", key="process_batch_md"): # 🚀 Button: Process the selected files!
501
+ combined_content = "" # 📝 Initialize combined content string!
 
 
 
 
502
  for md_file, selected in selected_md.items():
503
  if selected:
504
  try:
505
+ with open(md_file, "r", encoding="utf-8") as f: combined_content += f"\n## {md_file}\n" + f.read() + "\n" # 📄 Append each selected file's content!
506
+ except Exception as e: st.error(f"Error reading {md_file}: {str(e)}") # ⚠️ Report errors if file reading fails!
 
 
507
  if combined_content:
508
+ result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model) # 🤖 Process the batch with GPT!
509
+ st.markdown(result_text) # 🎨 Display the combined GPT output!
510
+ output_filename = generate_filename("batch_processed_md", "md") # 💾 Generate a unique filename for the batch output!
511
+ with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # 📝 Save the batch processed text!
512
+ st.success(f"Batch processing complete. MD file saved as {output_filename}") # 🎉 Notify success!
513
+ st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True) # 🔗 Provide a download link!
 
514
  else:
515
+ st.warning("No MD files selected.") # ⚠️ Warning: No files were chosen for batch processing!
516
  else:
517
+ st.warning("No MD files found.") # ⚠️ Warning: Your gallery is empty—no markdown files available!