#!/usr/bin/env python3
import os
import base64
import streamlit as st
import csv
import time
from dataclasses import dataclass
import zipfile
import logging
from streamlit.components.v1 import html
from PIL import Image
# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
st.set_page_config(page_title="SFT Tiny Titans π", page_icon="π€", layout="wide", initial_sidebar_state="expanded")
# Model Configurations
@dataclass
class ModelConfig:
name: str
base_model: str
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Lazy-loaded Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
def load_model(self, model_path: str, config: ModelConfig):
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
logger.info(f"Loading NLP model: {model_path}")
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.config = config
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
logger.info("NLP model loaded successfully")
except Exception as e:
logger.error(f"Error loading NLP model: {str(e)}")
raise
def fine_tune(self, csv_path):
try:
from torch.utils.data import Dataset, DataLoader
import torch
logger.info(f"Starting NLP fine-tuning with {csv_path}")
class SFTDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
labels = inputs["input_ids"].clone()
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=2)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
for _ in range(1):
for batch in dataloader:
optimizer.zero_grad()
outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()})
outputs.loss.backward()
optimizer.step()
logger.info("NLP fine-tuning completed")
except Exception as e:
logger.error(f"Error in NLP fine-tuning: {str(e)}")
raise
def evaluate(self, prompt: str):
try:
import torch
logger.info(f"Evaluating NLP with prompt: {prompt}")
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"NLP evaluation result: {result}")
return result
except Exception as e:
logger.error(f"Error in NLP evaluation: {str(e)}")
raise
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: DiffusionConfig):
try:
from diffusers import StableDiffusionPipeline
import torch
logger.info(f"Loading diffusion model: {model_path}")
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
self.config = config
logger.info("Diffusion model loaded successfully")
except Exception as e:
logger.error(f"Error loading diffusion model: {str(e)}")
raise
def fine_tune(self, images, texts):
try:
import torch
import numpy as np
logger.info("Starting diffusion fine-tuning")
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
for _ in range(1):
for img, text in zip(images, texts):
optimizer.zero_grad()
img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0
latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
logger.info("Diffusion fine-tuning completed")
except Exception as e:
logger.error(f"Error in diffusion fine-tuning: {str(e)}")
raise
def generate(self, prompt: str):
try:
logger.info(f"Generating image with prompt: {prompt}")
img = self.pipeline(prompt, num_inference_steps=20).images[0]
logger.info("Image generated successfully")
return img
except Exception as e:
logger.error(f"Error in image generation: {str(e)}")
raise
# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'{label} π₯'
def generate_filename(sequence, ext="png"):
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
return f"{sequence}{timestamp}.{ext}"
def get_gallery_files(file_types):
import glob
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
def zip_files(files, zip_name):
with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file in files:
zipf.write(file, os.path.basename(file))
return zip_name
# JavaScript/HTML Components
camera_selector_html = """
Camera & Audio Source Selector
"""
image_capture_html = """
Image Capture - Camera {id}
"""
video_capture_html = """
Video Capture - Camera {id}
"""
# Main App
st.title("SFT Tiny Titans π (Web Cam Action!)")
# Sidebar Galleries
st.sidebar.header("Captured Media π¨")
gallery_container = st.sidebar.empty()
def update_gallery():
media_files = get_gallery_files(["png", "mp4"])
with gallery_container:
if media_files:
cols = st.columns(2)
for idx, file in enumerate(media_files[:4]):
with cols[idx % 2]:
if file.endswith(".png"):
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
elif file.endswith(".mp4"):
st.video(file)
# Sidebar Model Management
st.sidebar.subheader("Model Hub ποΈ")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_options = {
"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M",
"CV (Diffusion)": ["CompVis/stable-diffusion-v1-4", "stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]
}
selected_model = st.sidebar.selectbox("Select Model", ["None"] + ([model_options[model_type]] if "NLP" in model_type else model_options[model_type]))
if selected_model != "None" and st.sidebar.button("Load Model π"):
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
with st.spinner("Loading... β³"):
try:
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Model loaded! π")
except Exception as e:
st.error(f"Load failed: {str(e)}")
# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build Titan π±", "Camera Snap π·", "Fine-Tune Titans π§", "Test Titans π§ͺ"])
with tab1:
st.header("Build Titan π± (Quick Start!)")
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
base_model = st.selectbox("Select Model", model_options[model_type], key="build_model")
if st.button("Download Model β¬οΈ"):
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
with st.spinner("Fetching... β³"):
try:
builder.load_model(base_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Titan up! π")
except Exception as e:
st.error(f"Download failed: {str(e)}")
with tab2:
st.header("Camera Snap π· (Dual Live Feed!)")
st.subheader("Source Configuration")
html(camera_selector_html, height=400)
cols = st.columns(2)
for i in range(2):
with cols[i]:
html(image_capture_html.format(id=i), height=300)
html(video_capture_html.format(id=i), height=300)
st.subheader("Upload Captured Files")
uploaded_files = st.file_uploader("Upload PNGs/MP4s from Downloads", type=["png", "mp4"], accept_multiple_files=True)
if uploaded_files:
for file in uploaded_files:
filename = file.name
with open(filename, "wb") as f:
f.write(file.read())
logger.info(f"Saved uploaded file: {filename}")
if filename.endswith(".png"):
st.image(Image.open(filename), caption=filename, use_container_width=True)
elif filename.endswith(".mp4"):
st.video(filename)
update_gallery()
with tab3:
st.header("Fine-Tune Titans π§ (Tune Fast!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! β οΈ")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Tune π§ ")
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
if uploaded_csv and st.button("Tune NLP π"):
logger.info("Initiating NLP fine-tune")
try:
with open("temp.csv", "wb") as f:
f.write(uploaded_csv.read())
st.session_state['builder'].fine_tune("temp.csv")
st.success("NLP sharpened! π")
except Exception as e:
st.error(f"NLP fine-tune failed: {str(e)}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Tune π¨")
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)]
if st.button("Tune CV π"):
logger.info("Initiating CV fine-tune")
try:
images = [Image.open(img) for img in captured_images]
st.session_state['builder'].fine_tune(images, texts)
st.success("CV polished! π")
except Exception as e:
st.error(f"CV fine-tune failed: {str(e)}")
else:
st.warning("Upload at least 2 PNGs in Camera Snap first! β οΈ")
with tab4:
st.header("Test Titans π§ͺ (Image Agent Demo!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! β οΈ")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Test π§ ")
prompt = st.text_area("Prompt", "Whatβs a superhero?", key="nlp_test")
if st.button("Test NLP βΆοΈ"):
logger.info("Running NLP test")
try:
result = st.session_state['builder'].evaluate(prompt)
st.write(f"**Answer**: {result}")
except Exception as e:
st.error(f"NLP test failed: {str(e)}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Test π¨ (Image Set Demo)")
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
if st.button("Run CV Demo βΆοΈ"):
logger.info("Running CV image set demo")
try:
images = [Image.open(img) for img in captured_images[:10]]
prompts = ["Neon " + os.path.basename(img).split('.')[0] for img in captured_images[:10]]
generated_images = []
for prompt in prompts:
img = st.session_state['builder'].generate(prompt)
generated_images.append(img)
cols = st.columns(2)
for idx, (orig, gen) in enumerate(zip(images, generated_images)):
with cols[idx % 2]:
st.image(orig, caption=f"Original: {captured_images[idx]}", use_container_width=True)
st.image(gen, caption=f"Generated: {prompts[idx]}", use_container_width=True)
md_content = "# Image Set Demo\n\nScript of filenames and descriptions:\n"
for i, (img, prompt) in enumerate(zip(captured_images[:10], prompts)):
md_content += f"{i+1}. `{img}` - {prompt}\n"
md_filename = f"demo_metadata_{int(time.time())}.md"
with open(md_filename, "w") as f:
f.write(md_content)
st.markdown(get_download_link(md_filename, "text/markdown", "Download Metadata .md"), unsafe_allow_html=True)
logger.info("CV demo completed with metadata")
except Exception as e:
st.error(f"CV demo failed: {str(e)}")
logger.error(f"Error in CV demo: {str(e)}")
else:
st.warning("Upload at least 2 PNGs in Camera Snap first! β οΈ")
# Display Logs
st.sidebar.subheader("Action Logs π")
log_container = st.sidebar.empty()
with log_container:
for record in log_records:
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
update_gallery() # Initial gallery update