import aiofiles import asyncio import base64 import fitz import glob import logging import os import pandas as pd import pytz import random import re import requests import shutil import streamlit as st import time import torch import zipfile from dataclasses import dataclass from datetime import datetime from diffusers import StableDiffusionPipeline from io import BytesIO from openai import OpenAI from PIL import Image from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel from typing import Optional # πŸ€– OpenAI wizardry: Summon your API magic! client = OpenAI( api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID') ) # πŸ“œ Logging activated: Capturing chaos and calm! logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) log_records = [] class LogCaptureHandler(logging.Handler): def emit(self, record): log_records.append(record) logger.addHandler(LogCaptureHandler()) # 🎨 Streamlit styling: Designing a cosmic interface! st.set_page_config( page_title="AI Vision & SFT Titans πŸš€", page_icon="πŸ€–", layout="wide", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a Bug': 'https://huggingface.co/spaces/awacke1', 'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌" } ) st.session_state.setdefault('history', []) # 🌱 History: starting fresh if empty! st.session_state.setdefault('builder', None) # πŸ› οΈ Builder: set up the builder if it's missing! st.session_state.setdefault('model_loaded', False) # 🚦 Model Loaded: mark as not loaded by default! st.session_state.setdefault('processing', {}) # ⏳ Processing: initialize processing state as an empty dict! st.session_state.setdefault('asset_checkboxes', {}) # βœ… Asset Checkboxes: default to an empty dictionary! st.session_state.setdefault('downloaded_pdfs', {}) # πŸ“„ Downloaded PDFs: start with no PDFs downloaded! st.session_state.setdefault('unique_counter', 0) # πŸ”’ Unique Counter: initialize the counter to zero! st.session_state.setdefault('selected_model_type', "Causal LM") # 🧠 Selected Model Type: default to "Causal LM"! st.session_state.setdefault('selected_model', "None") # πŸ€– Selected Model: set to "None" if not already set! st.session_state.setdefault('cam0_file', None) # πŸ“Έ Cam0 File: no file loaded by default! st.session_state.setdefault('cam1_file', None) # πŸ“Έ Cam1 File: no file loaded by default! @dataclass # 🎨 ModelConfig: A blueprint for model configurations! class ModelConfig: name: str base_model: str size: str domain: Optional[str] = None model_type: str = "causal_lm" @property def model_path(self): return f"models/{self.name}" # πŸš€ Model Path: Home base for brilliance! @dataclass # 🎨 DiffusionConfig: Where diffusion magic takes shape! class DiffusionConfig: name: str base_model: str size: str domain: Optional[str] = None @property def model_path(self): return f"diffusion_models/{self.name}" # πŸš€ Diffusion Path: Let the diffusion begin! class ModelBuilder: # πŸ”§ ModelBuilder: Crafting AI wonders with wit! def __init__(self): # πŸš€ Initialize: Setting up the AI factory! self.config = None # No config yetβ€”waiting for genius! self.model = None # Model not built until the magic happens! self.tokenizer = None # Tokenizer: Ready to speak in AI! self.jokes = [ # 🀣 Jokes to keep the circuits laughing! "Why did the AI go to therapy? Too many layers to unpack! πŸ˜‚", "Training complete! Time for a binary coffee break. β˜•", "I told my neural network a joke; it couldn't stop dropping bits! πŸ€–", "I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' πŸ˜„", "Debugging my code is like a stand-up routineβ€”always a series of exceptions! πŸ˜†" ] def load_model(self, model_path: str, config: Optional[ModelConfig] = None): # πŸ”„ load_model: Booting up genius! with st.spinner(f"Loading {model_path}... ⏳"): # ⏳ Spinner: Genius loading... self.model = AutoModelForCausalLM.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # πŸ”§ Fix pad token if missing! if config: self.config = config # πŸ› οΈ Config loadedβ€”setting the stage! self.model.to("cuda" if torch.cuda.is_available() else "cpu") # πŸ’» Deploying the model to its device! st.success(f"Model loaded! πŸŽ‰ {random.choice(self.jokes)}") # πŸŽ‰ Success: Model is now in orbit! return self def save_model(self, path: str): # πŸ’Ύ save_model: Securing your masterpiece! with st.spinner("Saving model... πŸ’Ύ"): # ⏳ Spinner: Saving brilliance... os.makedirs(os.path.dirname(path), exist_ok=True); self.model.save_pretrained(path); self.tokenizer.save_pretrained(path) # πŸ“‚ Directory magic: Creating and saving! st.success(f"Model saved at {path}! βœ…") # βœ… Success: Your model is safely stored! class DiffusionBuilder: def __init__(self): self.config = None self.pipeline = None def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): with st.spinner(f"Loading diffusion model {model_path}... ⏳"): self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") if config: self.config = config st.success("Diffusion model loaded! 🎨") return self def save_model(self, path: str): with st.spinner("Saving diffusion model... πŸ’Ύ"): os.makedirs(os.path.dirname(path), exist_ok=True) self.pipeline.save_pretrained(path) st.success(f"Diffusion model saved at {path}! βœ…") def generate(self, prompt: str): return self.pipeline(prompt, num_inference_steps=20).images[0] def generate_filename(sequence, ext="png"): return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}" # ⏳ Generate filename with timestamp magic! def pdf_url_to_filename(url): return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf" # πŸ“„ Convert URL to a safe PDF filename – no hackers allowed! def get_download_link(file_path, mime_type="application/pdf", label="Download"): return f'{label}' # πŸ”— Create a download link – click it like it's hot! def zip_directory(directory_path, zip_path): with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: [zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) for root, _, files in os.walk(directory_path) for file in files] # 🎁 Zip directory: Packing files faster than Santa on Christmas Eve! def get_model_files(model_type="causal_lm"): return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"] # πŸ“‚ Get model files: Hunting directories like a pro! def get_gallery_files(file_types=["png", "pdf"]): return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) # πŸ–ΌοΈ Get gallery files: Finding art in a digital haystack! def get_pdf_files(): return sorted(glob.glob("*.pdf")) # πŸ“„ Get PDF files: Sorted and served – no paper cuts here! # πŸ“₯ Download PDF: Delivering docs faster than a caffeinated courier! def download_pdf(url, output_path): try: response = requests.get(url, stream=True, timeout=10); [open(output_path, "wb").write(chunk) for chunk in response.iter_content(chunk_size=8192)] if response.status_code == 200 else None; ret = True if response.status_code == 200 else False except requests.RequestException as e: logger.error(f"Failed to download {url}: {e}"); ret = False return ret # πŸ“š Async PDF Snapshot: Snap your PDF pages without blockingβ€”juggle pages like a ninja! πŸ₯· async def process_pdf_snapshot(pdf_path, mode="single"): start_time = time.time(); status = st.empty(); status.text(f"Processing PDF Snapshot ({mode})... (0s)") try: doc = fitz.open(pdf_path); output_files = [] if mode == "single": page = doc[0]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename("single", "png"); pix.save(output_file); output_files.append(output_file) elif mode == "twopage": for i in range(min(2, len(doc))): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"twopage_{i}", "png"); pix.save(output_file); output_files.append(output_file) elif mode == "allpages": for i in range(len(doc)): page = doc[i]; pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); output_file = generate_filename(f"page_{i}", "png"); pix.save(output_file); output_files.append(output_file) doc.close(); elapsed = int(time.time() - start_time); status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!"); update_gallery(); return output_files except Exception as e: status.error(f"Failed to process PDF: {str(e)}"); return [] # 😎 Async OCR: Convert images to text while your app keeps on groovin'β€”no blocking, just rocking! 🎸 async def process_ocr(image, output_file): start_time = time.time(); status = st.empty(); status.text("Processing GOT-OCR2_0... (0s)") tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True); model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() temp_file = f"temp_{int(time.time())}.png"; image.save(temp_file) result = model.chat(tokenizer, temp_file, ocr_type='ocr'); os.remove(temp_file) elapsed = int(time.time() - start_time); status.text(f"GOT-OCR2_0 completed in {elapsed}s!") async with aiofiles.open(output_file, "w") as f: await f.write(result) update_gallery(); return result # 🧞 Async Image Gen: Your image genieβ€”wishing up pictures while the event loop keeps the party going! πŸŽ‰ async def process_image_gen(prompt, output_file): start_time = time.time(); status = st.empty(); status.text("Processing Image Gen... (0s)") pipeline = st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu") gen_image = pipeline(prompt, num_inference_steps=20).images[0]; elapsed = int(time.time() - start_time) status.text(f"Image Gen completed in {elapsed}s!"); gen_image.save(output_file); update_gallery(); return gen_image # πŸ–ΌοΈ GPT-Image Interpreter: Turning pixels into prose! def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"): buffered = BytesIO(); image.save(buffered, format="PNG") # πŸ’Ύ Save the image in-memory as PNGβ€”no hard drives harmed! img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") # πŸ” Encode image data in Base64 for secure, inline transmission! messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}] # πŸ’¬ Build the GPT conversation with your prompt and image! try: response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # πŸ€– Invoke GPT’s magic and return its dazzling output! except Exception as e: return f"Error processing image with GPT: {str(e)}" # ⚠️ Oopsβ€”GPT encountered a snag, so we catch and report the error! # πŸ“ GPT-Text Alchemist: Merging your prompt and text into digital gold! def process_text_with_prompt(text, prompt, model="gpt-4o-mini"): messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] # πŸ› οΈ Constructing the conversation input like a master wordsmith! try: response = client.chat.completions.create(model=model, messages=messages, max_tokens=300); return response.choices[0].message.content # πŸ€– Summon GPT’s wisdom and return its brilliant answer! except Exception as e: return f"Error processing text with GPT: {str(e)}" # ⚠️ Oops, GPT stumbledβ€”catching and reporting the error! st.sidebar.subheader("Gallery Settings") # 🎨 Sidebar Gallery: Customize your creative space! st.session_state.setdefault('gallery_size', 2) # πŸ”§ Setting default gallery size to 2 if it's missing! st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") # 🎚️ Slide to adjust your gallery size and bring balance to your art! # πŸ“Έ Gallery Updater: Making your assets dazzle and disappear faster than a magician's rabbit! πŸ‡βœ¨ def update_gallery(): all_files = get_gallery_files() # πŸ” Grab all gallery files like a digital treasure hunt! if all_files: # βœ… If assets are found, let the show begin! st.sidebar.subheader("Asset Gallery πŸ“ΈπŸ“–"); cols = st.sidebar.columns(2) # 🎨 Set up a stylish 2-column layout in the sidebar! for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): # πŸ–ΌοΈ Loop through your favorite files, limited by gallery size! with cols[idx % 2]: # πŸ”„ Alternate columnsβ€”because balance is key (and funny)! st.session_state['unique_counter'] += 1; unique_id = st.session_state['unique_counter'] # πŸš€ Increment your asset counterβ€”every asset gets its moment in the spotlight! if file.endswith('.png'): st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) # πŸ–ΌοΈ Display the image like a masterpiece! else: # πŸ“„ For PDFs, we snap their first page like a paparazzo! doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(img, caption=os.path.basename(file), use_container_width=True); doc.close() checkbox_key = f"asset_{file}_{unique_id}" # πŸ”‘ Create a unique keyβ€”because every asset deserves VIP treatment! st.session_state['asset_checkboxes'][file] = st.checkbox("Use for SFT/Input", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key) # βœ… Checkbox: Pick your asset for magic (or SFT)! mime_type = "image/png" if file.endswith('.png') else "application/pdf" # πŸ“Ž Determine MIME typeβ€”like sorting your socks, but cooler! st.markdown(get_download_link(file, mime_type, "Snag It! πŸ“₯"), unsafe_allow_html=True) # πŸ”— Provide a download linkβ€”grab your asset faster than a flash sale! if st.button("Zap It! πŸ—‘οΈ", key=f"delete_{file}_{unique_id}"): # ⚑ "Zap It!" button: Because sometimes you just gotta make stuff disappear! os.remove(file); st.session_state['asset_checkboxes'].pop(file, None); st.sidebar.success(f"Asset {os.path.basename(file)} vaporized! πŸ’¨"); st.rerun() # πŸ’₯ Delete the file and refresh the galleryβ€”poof, it's gone! #update_gallery() # πŸŽ‰ Launch the gallery updateβ€”let the art party commence! (Joke: Why did the asset cross the road? To get zapped on the other side! πŸ˜†) st.sidebar.subheader("Action Logs πŸ“œ") # πŸ“ Action Logs: Where our system whispers its secrets! with st.sidebar: [st.write(f"{record.asctime} - {record.levelname} - {record.message}") for record in log_records] # πŸ“š Loop through log records and display them like diary entries! st.sidebar.subheader("History πŸ“œ") # πŸ•°οΈ History: A walk down memory lane, one log at a time! with st.sidebar: [st.write(entry) for entry in st.session_state['history']] # ⏳ Display every historic moment with style! tabs = st.tabs(["Camera Snap πŸ“·", "Download PDFs πŸ“₯", "Test OCR πŸ”", "Build Titan 🌱", "Test Image Gen 🎨", "PDF Process πŸ“„", "Image Process πŸ–ΌοΈ", "MD Gallery πŸ“š"]) # 🎭 Tabs: Navigate your AI universe like a boss! (tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf_process, tab_image_process, tab_md_gallery) = tabs # πŸš€ Unpack the tabs and get ready to exploreβ€”because even tabs need to party! with tab_camera: st.header("Camera Snap πŸ“·") # πŸŽ₯ Header: Let’s capture those Kodak moments! st.subheader("Single Capture") # πŸ“Έ Subheader: One snap at a time, no double exposure! cols = st.columns(2) # 🧩 Creating two columns for double-camera action! with cols[0]: cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") # πŸ“· Cam 0: Say cheese! if cam0_img: filename = generate_filename("cam0") # 🏷️ Filename for Cam 0 snapshot generated! if st.session_state['cam0_file'] and os.path.exists(st.session_state['cam0_file']): os.remove(st.session_state['cam0_file']) # πŸ—‘οΈ Out with the old Cam 0 snap! with open(filename, "wb") as f: f.write(cam0_img.getvalue()) # πŸ’Ύ Saving Cam 0 image like a boss! st.session_state['cam0_file'] = filename # πŸ”„ Updating session state for Cam 0 file! entry = f"Snapshot from Cam 0: {filename}" # πŸ“ History entry: Cam 0 snapshot recorded! if entry not in st.session_state['history']: st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry] # 🧹 Cleaning and updating history! st.image(Image.open(filename), caption="Camera 0", use_container_width=True) # πŸ–ΌοΈ Displaying the fresh Cam 0 image! logger.info(f"Saved snapshot from Camera 0: {filename}") # πŸ” Logging: Cam 0 snapshot saved! update_gallery() # πŸ”„ Refreshing gallery to show the new snap! with cols[1]: cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") # πŸ“· Cam 1: Capture your best side! if cam1_img: filename = generate_filename("cam1") # 🏷️ Filename for Cam 1 snapshot generated! if st.session_state['cam1_file'] and os.path.exists(st.session_state['cam1_file']): os.remove(st.session_state['cam1_file']) # πŸ—‘οΈ Out with the old Cam 1 snap! with open(filename, "wb") as f: f.write(cam1_img.getvalue()) # πŸ’Ύ Saving Cam 1 image like a pro! st.session_state['cam1_file'] = filename # πŸ”„ Updating session state for Cam 1 file! entry = f"Snapshot from Cam 1: {filename}" # πŸ“ History entry: Cam 1 snapshot recorded! if entry not in st.session_state['history']: st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry] # 🧹 Cleaning and updating history! st.image(Image.open(filename), caption="Camera 1", use_container_width=True) # πŸ–ΌοΈ Displaying the fresh Cam 1 image! logger.info(f"Saved snapshot from Camera 1: {filename}") # πŸ” Logging: Cam 1 snapshot saved! update_gallery() # πŸ”„ Refreshing gallery to show the new snap! # === Tab: Download PDFs === with tab_download: st.header("Download PDFs πŸ“₯") # πŸ“₯ Header: Ready to snag PDFs like a digital ninja! if st.button("Examples πŸ“š"): # πŸ“š Button: Load up some scholarly URLs for instant fun! example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703", "https://arxiv.org/pdf/2408.11039", "https://arxiv.org/pdf/2109.10282", "https://arxiv.org/pdf/2112.10752", "https://arxiv.org/pdf/2308.11236", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2006.11239", "https://arxiv.org/pdf/2305.11207", "https://arxiv.org/pdf/2106.09685", "https://arxiv.org/pdf/2005.11401", "https://arxiv.org/pdf/2106.10504"]; st.session_state['pdf_urls'] = "\n".join(example_urls) # πŸ“š Examples loaded into session! url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) # πŸ“ Text area: Paste your PDF URLs hereβ€”no commas needed! # --- Download PDFs Tab (modified section) --- if st.button("Robo-Download πŸ€–"): urls = url_input.strip().split("\n") progress_bar = st.progress(0) status_text = st.empty() total_urls = len(urls) existing_pdfs = get_pdf_files() for idx, url in enumerate(urls): if url: output_path = pdf_url_to_filename(url) status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...") if output_path not in existing_pdfs: if download_pdf(url, output_path): st.session_state['downloaded_pdfs'][url] = output_path logger.info(f"Downloaded PDF from {url} to {output_path}") entry = f"Downloaded PDF: {output_path}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.session_state['asset_checkboxes'][output_path] = True else: st.error(f"Failed to nab {url} 😿") else: st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾") st.session_state['downloaded_pdfs'][url] = output_path progress_bar.progress((idx + 1) / total_urls) status_text.text("Robo-Download complete! πŸš€") update_gallery() mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (High-Res)"], key="download_mode") # πŸŽ›οΈ Selectbox: Choose your snapshot resolution! if st.button("Snapshot Selected πŸ“Έ"): selected_pdfs = [path for path in get_gallery_files() if path.endswith('.pdf') and st.session_state['asset_checkboxes'].get(path, False)] if selected_pdfs: for pdf_path in selected_pdfs: if not os.path.exists(pdf_path): st.warning(f"File not found: {pdf_path}. Skipping.") continue mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages"}[mode] snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) for snapshot in snapshots: st.image(Image.open(snapshot), caption=snapshot, use_container_width=True) st.session_state['asset_checkboxes'][snapshot] = True update_gallery() else: st.warning("No PDFs selected for snapshotting! Check some boxes in the sidebar.") # === Tab: Test OCR === with tab_ocr: st.header("Test OCR πŸ”") # πŸ” Header: Time to turn images into textβ€”magic for your eyeballs! all_files = get_gallery_files(); # πŸ“‚ Gathering all assets from the gallery! if all_files: if st.button("OCR All Assets πŸš€"): # πŸš€ Button: Blast OCR on every asset in one go! full_text = "# OCR Results\n\n"; # πŸ“ Starting a full OCR report! for file in all_files: if file.endswith('.png'): image = Image.open(file) # πŸ–ΌοΈ PNG? Open image directly! else: doc = fitz.open(file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # πŸ“„ PDF? Grab a snapshot of the first page! output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt"); # πŸ’Ύ Create a unique filename for the OCR text! result = asyncio.run(process_ocr(image, output_file)); # πŸ€– Run OCR asynchronouslyβ€”non-blocking wizardry! full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"; # πŸ“ Append the OCR result to the full report! entry = f"OCR Test: {file} -> {output_file}"; # πŸ“ Log this OCR operation! if entry not in st.session_state['history']: st.session_state['history'].append(entry) # βœ… Update history if this entry is new! md_output_file = f"full_ocr_{int(time.time())}.md"; # πŸ“ Generate a markdown filename for the full OCR report! with open(md_output_file, "w") as f: f.write(full_text); # πŸ’Ύ Write the full OCR report to disk! st.success(f"Full OCR saved to {md_output_file}"); # πŸŽ‰ Success: Full OCR report is saved! st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # πŸ”— Provide a download link for your OCR masterpiece! selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select"); # πŸ” Selectbox: Pick an asset for individual OCR! if selected_file: if selected_file.endswith('.png'): image = Image.open(selected_file) # πŸ–ΌοΈ Open the selected PNG image! else: doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # πŸ“„ For PDFs, extract a snapshot from the first page! st.image(image, caption="Input Image", use_container_width=True); # πŸ–ΌοΈ Display the selected asset for OCR review! if st.button("Run OCR πŸš€", key="ocr_run"): # πŸš€ Button: Run OCR on the selected asset! output_file = generate_filename("ocr_output", "txt"); st.session_state['processing']['ocr'] = True; # πŸ’Ύ Generate output filename and flag processing! result = asyncio.run(process_ocr(image, output_file)); # πŸ€– Execute OCR asynchronously! entry = f"OCR Test: {selected_file} -> {output_file}"; # πŸ“ Create a log entry for this OCR run! if entry not in st.session_state['history']: st.session_state['history'].append(entry); # βœ… Update history if new! st.text_area("OCR Result", result, height=200, key="ocr_result"); # πŸ“„ Show the OCR result in a text area! st.success(f"OCR output saved to {output_file}"); st.session_state['processing']['ocr'] = False # πŸŽ‰ Success: OCR result saved and processing flag reset! if selected_file.endswith('.pdf') and st.button("OCR All Pages πŸš€", key="ocr_all_pages"): # πŸ“„ Button: Run OCR on every page of a PDF! doc = fitz.open(selected_file); full_text = f"# OCR Results for {os.path.basename(selected_file)}\n\n"; # πŸ“ Start a report for multi-page PDF OCR! for i in range(len(doc)): pix = doc[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # πŸ–ΌοΈ Capture each page as an image! output_file = generate_filename(f"ocr_page_{i}", "txt"); result = asyncio.run(process_ocr(image, output_file)); # πŸ’Ύ Generate filename and process OCR for the page! full_text += f"## Page {i + 1}\n\n{result}\n\n"; # πŸ“ Append the page's OCR result to the report! entry = f"OCR Test: {selected_file} Page {i + 1} -> {output_file}"; # πŸ“ Log this page's OCR operation! if entry not in st.session_state['history']: st.session_state['history'].append(entry) # βœ… Update history if this entry is new! md_output_file = f"full_ocr_{os.path.basename(selected_file)}_{int(time.time())}.md"; # πŸ“ Create a markdown filename for the full multi-page OCR report! with open(md_output_file, "w") as f: f.write(full_text); # πŸ’Ύ Write the full multi-page OCR report to disk! st.success(f"Full OCR saved to {md_output_file}"); # πŸŽ‰ Success: Multi-page OCR report is saved! st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) # πŸ”— Provide a download link for the multi-page OCR report! else: st.warning("No assets in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: Your gallery is emptyβ€”capture or download some assets first! # === Tab: Build Titan === with tab_build: st.header("Build Titan 🌱") # 🌱 Header: Build your own Titanβ€”tiny models, huge ambitions! model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") # πŸ” Choose your model flavor! base_model = st.selectbox( "Select Tiny Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"] ) # πŸ€– Pick a tiny model based on your choice! model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") # 🏷️ Auto-generate a cool model name with a timestamp! domain = st.text_input("Target Domain", "general") # 🎯 Specify your target domain (default: general)! if st.button("Download Model ⬇️"): # ⬇️ Button: Download your model and get ready to unleash the Titan! config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)( name=model_name, base_model=base_model, size="small", domain=domain ) # πŸ“ Create model configuration on the fly! builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() # πŸ”§ Instantiate the builder for your model type! builder.load_model(base_model, config); builder.save_model(config.model_path) # πŸš€ Load and save the modelβ€”instant Titan assembly! st.session_state['builder'] = builder; st.session_state['model_loaded'] = True # βš™οΈ Update session state: model is now loaded! st.session_state['selected_model_type'] = model_type; st.session_state['selected_model'] = config.model_path # πŸ”‘ Store your selection for posterity! entry = f"Built {model_type} model: {model_name}" # πŸ“ Log the build event in history! if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.success(f"Model downloaded and saved to {config.model_path}! πŸŽ‰"); st.rerun() # πŸŽ‰ Success: Titan built, now re-run to refresh the interface! # === Tab: Test Image Gen === with tab_imggen: st.header("Test Image Gen 🎨") # 🎨 Header: Time to get creative with AI image generation! all_files = get_gallery_files() # πŸ“‚ Retrieve all gallery assets for selection. if all_files: selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select") # πŸ” Select an asset to spark creativity! if selected_file: if selected_file.endswith('.png'): image = Image.open(selected_file) # πŸ–ΌοΈ Directly open PNG images! else: doc = fitz.open(selected_file); pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); doc.close() # πŸ“„ For PDFs, extract the first page as an image! st.image(image, caption="Reference Image", use_container_width=True) # πŸ–ΌοΈ Display the chosen asset as reference. prompt = st.text_area("Prompt", "Generate a neon superhero version of this image", key="gen_prompt") # ✍️ Enter a creative prompt to transform the image! if st.button("Run Image Gen πŸš€", key="gen_run"): # πŸš€ Button: Ignite the image generator! output_file = generate_filename("gen_output", "png"); st.session_state['processing']['gen'] = True # πŸ’Ύ Create output filename and flag processing status. result = asyncio.run(process_image_gen(prompt, output_file)) # πŸ€– Run the async image generationβ€”non-blocking magic in action! entry = f"Image Gen Test: {prompt} -> {output_file}" # πŸ“ Log the image generation event! if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.image(result, caption="Generated Image", use_container_width=True) # πŸ–ΌοΈ Showcase the newly generated image! st.success(f"Image saved to {output_file}"); st.session_state['processing']['gen'] = False # πŸŽ‰ Success: Your masterpiece is saved and processing is complete! else: st.warning("No images or PDFs in gallery yet. Use Camera Snap or Download PDFs!") # ⚠️ Warning: No assets availableβ€”capture or download some first! update_gallery() # πŸ”„ Refresh the gallery to display any updates! # === Updated Tab: PDF Process === with tab_pdf_process: st.header("PDF Process") # πŸ“„ Header: Ready to transform your PDFs into text with GPT magic! st.subheader("Upload PDFs for GPT-based text extraction") # πŸš€ Subheader: Upload your PDFs and let the AI do the reading! gpt_models = ["gpt-4o", "gpt-4o-mini"] # πŸ€– GPT Models: Pick your AI wizardβ€”more vision-capable models may join the party! selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="pdf_gpt_model") # πŸ” Select your GPT model and let it work its charm! detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="pdf_detail_level") # 🎚️ Detail Level: Fine-tune your extraction’s precision! uploaded_pdfs = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader") # πŸ“€ Uploader: Drag & drop your PDFs for processing! view_mode = st.selectbox("View Mode", ["Single Page", "Double Page"], key="pdf_view_mode") # πŸ‘€ View Mode: Choose single or double page snapshots! if st.button("Process Uploaded PDFs", key="process_pdfs"): # βš™οΈ Button: Kick off the PDF processing extravaganza! combined_text = "" # πŸ“ Initialize a blank slate for the GPT output! for pdf_file in uploaded_pdfs: # πŸ”„ Loop through each uploaded PDF file! pdf_bytes = pdf_file.read() # πŸ“₯ Read the PDF bytes into memory! temp_pdf_path = f"temp_{pdf_file.name}" # 🏷️ Create a temporary filename for processing! with open(temp_pdf_path, "wb") as f: f.write(pdf_bytes) # πŸ’Ύ Write the PDF to a temporary file! try: doc = fitz.open(temp_pdf_path) # πŸ“„ Open the temporary PDF document! st.write(f"Processing {pdf_file.name} with {len(doc)} pages") # πŸ” Log: Display file name and page count! if view_mode == "Single Page": # πŸ“‘ Single Page Mode: Process each page separately! for i, page in enumerate(doc): pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); # 🎞️ Create a high-res pixmap of the page! img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # πŸ–ΌοΈ Convert the pixmap to an image! st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # πŸ–ΌοΈ Display the page image! gpt_text = process_image_with_prompt( img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level ); # πŸ€– Run GPT to extract text from the image! combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # πŸ“ Append the result to the combined text! else: # πŸ“„ Double Page Mode: Process pages in pairs! pages = list(doc); # πŸ”’ Convert document pages to a list! for i in range(0, len(pages), 2): if i+1 < len(pages): # πŸ‘― Process two pages if available! pix1 = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples); # πŸ–ΌοΈ Process first page! pix2 = pages[i+1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples); # πŸ–ΌοΈ Process second page! total_width = img1.width + img2.width; max_height = max(img1.height, img2.height); # πŸ“ Calculate dimensions for the combined image! combined_img = Image.new("RGB", (total_width, max_height)); # πŸ–ΌοΈ Create a blank canvas for the two pages! combined_img.paste(img1, (0, 0)); combined_img.paste(img2, (img1.width, 0)); # 🎨 Paste the images side by side! st.image(combined_img, caption=f"{pdf_file.name} Pages {i+1}-{i+2}"); # πŸ–ΌοΈ Display the combined image! gpt_text = process_image_with_prompt( combined_img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level ); # πŸ€– Extract text from the combined image! combined_text += f"\n## {pdf_file.name} - Pages {i+1}-{i+2}\n\n{gpt_text}\n"; # πŸ“ Append the result to the combined text! else: # πŸ”Ή If there's an odd page out, process it solo! pix = pages[i].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); # πŸ–ΌοΈ Process the single remaining page! st.image(img, caption=f"{pdf_file.name} Page {i+1}"); # πŸ–ΌοΈ Display the solo page image! gpt_text = process_image_with_prompt( img, "Extract the electronic text from image", model=selected_gpt_model, detail=detail_level ); # πŸ€– Run GPT extraction on the solo page! combined_text += f"\n## {pdf_file.name} - Page {i+1}\n\n{gpt_text}\n"; # πŸ“ Append the result! doc.close(); # βœ… Close the PDF document to free up resources! except Exception as e: st.error(f"Error processing {pdf_file.name}: {str(e)}"); # ⚠️ Error: Report any issues during processing! finally: os.remove(temp_pdf_path); # 🧹 Cleanup: Remove the temporary PDF file! output_filename = generate_filename("processed_pdf", "md"); # 🏷️ Generate a unique filename for the Markdown output! with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text); # πŸ’Ύ Write the combined GPT text to the Markdown file! st.success(f"PDF processing complete. MD file saved as {output_filename}"); # πŸŽ‰ Success: Notify the user of completion! st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed PDF MD"), unsafe_allow_html=True); # πŸ”— Provide a download link for your processed file! # === Updated Tab: Image Process === with tab_image_process: st.header("Image Process") # πŸ–ΌοΈ Header: Transform images into text with GPT magic! st.subheader("Upload Images for GPT-based OCR") # πŸš€ Subheader: Let your images speak for themselves! gpt_models = ["gpt-4o", "gpt-4o-mini"] # πŸ€– GPT Models: Choose your image wizard! selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="img_gpt_model") # πŸ” Pick your GPT model for image processing! detail_level = st.selectbox("Detail Level", ["auto", "low", "high"], key="img_detail_level") # 🎚️ Detail Level: Set your extraction precision! prompt_img = st.text_input("Enter prompt for image processing", "Extract the electronic text from image", key="img_process_prompt") # ✍️ Prompt: Tell GPT what to extract! uploaded_images = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader") # πŸ“€ Uploader: Drag & drop your images here! if st.button("Process Uploaded Images", key="process_images"): # πŸš€ Button: Fire up the image processing! combined_text = "" # πŸ“ Initialize combined text output! for img_file in uploaded_images: try: img = Image.open(img_file); st.image(img, caption=img_file.name) # πŸ“Έ Display each uploaded image! gpt_text = process_image_with_prompt(img, prompt_img, model=selected_gpt_model, detail=detail_level) # πŸ€– Process image with GPT magic! combined_text += f"\n## {img_file.name}\n\n{gpt_text}\n" # πŸ“ Append GPT output with file header! except Exception as e: st.error(f"Error processing image {img_file.name}: {str(e)}") # ⚠️ Oops: Report errors if any! output_filename = generate_filename("processed_image", "md") # πŸ’Ύ Generate a unique filename for the Markdown output! with open(output_filename, "w", encoding="utf-8") as f: f.write(combined_text) # πŸ“ Save the combined GPT output! st.success(f"Image processing complete. MD file saved as {output_filename}") # πŸŽ‰ Success: Notify the user! st.markdown(get_download_link(output_filename, "text/markdown", "Download Processed Image MD"), unsafe_allow_html=True) # πŸ”— Provide a download link! # === Updated Tab: MD Gallery === with tab_md_gallery: st.header("MD Gallery and GPT Processing") # πŸ“š Header: Where markdown meets GPT wizardry! gpt_models = ["gpt-4o", "gpt-4o-mini"] # πŸ€– GPT Models: Pick your processing partner! selected_gpt_model = st.selectbox("Select GPT Model", gpt_models, key="md_gpt_model") # πŸ” Select a GPT model for MD processing! md_files = sorted(glob.glob("*.md")) # πŸ“‚ Gather all Markdown files in the directory! if md_files: st.subheader("Individual File Processing") # πŸ” Subheader: Process files one at a time! cols = st.columns(2) # 🧩 Set up two columns for a balanced view! for idx, md_file in enumerate(md_files): with cols[idx % 2]: st.write(md_file) # πŸ“„ Show the filename! if st.button(f"Process {md_file}", key=f"process_md_{md_file}"): # πŸš€ Button: Process this file! try: with open(md_file, "r", encoding="utf-8") as f: content = f.read() # πŸ“– Read file content! prompt_md = "Summarize this into markdown outline with emojis and number the topics 1..12" # ✍️ Prompt: Summarize with style! result_text = process_text_with_prompt(content, prompt_md, model=selected_gpt_model) # πŸ€– Let GPT work its magic! st.markdown(result_text) # 🎨 Display the GPT output! output_filename = generate_filename(f"processed_{os.path.splitext(md_file)[0]}", "md") # πŸ’Ύ Create a unique output filename! with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # πŸ“ Save the processed content! st.markdown(get_download_link(output_filename, "text/markdown", f"Download {output_filename}"), unsafe_allow_html=True) # πŸ”— Provide a download link! except Exception as e: st.error(f"Error processing {md_file}: {str(e)}") # ⚠️ Report errors if processing fails! st.subheader("Batch Processing") # πŸ“š Subheader: Combine and process multiple files at once! st.write("Select MD files to combine and process:") # πŸ” Instruction: Choose files for batch processing! selected_md = {} # πŸ—‚οΈ Initialize selection dictionary! for md_file in md_files: selected_md[md_file] = st.checkbox(md_file, key=f"checkbox_md_{md_file}") # βœ… Create checkboxes for each file! batch_prompt = st.text_input("Enter batch processing prompt", "Summarize this into markdown outline with emojis and number the topics 1..12", key="batch_prompt") # ✍️ Batch prompt: Set your summarization style! if st.button("Process Selected MD Files", key="process_batch_md"): # πŸš€ Button: Process the selected files! combined_content = "" # πŸ“ Initialize combined content string! for md_file, selected in selected_md.items(): if selected: try: with open(md_file, "r", encoding="utf-8") as f: combined_content += f"\n## {md_file}\n" + f.read() + "\n" # πŸ“„ Append each selected file's content! except Exception as e: st.error(f"Error reading {md_file}: {str(e)}") # ⚠️ Report errors if file reading fails! if combined_content: result_text = process_text_with_prompt(combined_content, batch_prompt, model=selected_gpt_model) # πŸ€– Process the batch with GPT! st.markdown(result_text) # 🎨 Display the combined GPT output! output_filename = generate_filename("batch_processed_md", "md") # πŸ’Ύ Generate a unique filename for the batch output! with open(output_filename, "w", encoding="utf-8") as f: f.write(result_text) # πŸ“ Save the batch processed text! st.success(f"Batch processing complete. MD file saved as {output_filename}") # πŸŽ‰ Notify success! st.markdown(get_download_link(output_filename, "text/markdown", "Download Batch Processed MD"), unsafe_allow_html=True) # πŸ”— Provide a download link! else: st.warning("No MD files selected.") # ⚠️ Warning: No files were chosen for batch processing! else: st.warning("No MD files found.") # ⚠️ Warning: Your gallery is emptyβ€”no markdown files available!