#!/usr/bin/env python3 import os import glob import time import streamlit as st from PIL import Image import torch from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer, AutoModel, TrOCRProcessor, VisionEncoderDecoderModel from diffusers import StableDiffusionPipeline import cv2 import numpy as np import logging import asyncio import aiofiles from io import BytesIO # Logging setup logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) log_records = [] class LogCaptureHandler(logging.Handler): def emit(self, record): log_records.append(record) logger.addHandler(LogCaptureHandler()) # Page Configuration st.set_page_config( page_title="AI Vision Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded", menu_items={'About': "AI Vision Titans: OCR, Image Gen, Line Drawings on CPU! 🌌"} ) # Initialize st.session_state if 'captured_images' not in st.session_state: st.session_state['captured_images'] = [] if 'processing' not in st.session_state: st.session_state['processing'] = {} # Utility Functions def generate_filename(sequence, ext="png"): from datetime import datetime import pytz central = pytz.timezone('US/Central') timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p") return f"{sequence}{timestamp}.{ext}" def get_gallery_files(file_types): return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) def update_gallery(): media_files = get_gallery_files(["png", "txt"]) if media_files: cols = st.sidebar.columns(2) for idx, file in enumerate(media_files[:gallery_size * 2]): with cols[idx % 2]: if file.endswith(".png"): st.image(Image.open(file), caption=file, use_container_width=True) elif file.endswith(".txt"): with open(file, "r") as f: st.text(f.read()[:50] + "..." if len(f.read()) > 50 else f.read(), help=file) # Model Loaders (Smaller, CPU-focused) def load_ocr_qwen2vl(): model_id = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model = Qwen2VLForConditionalGeneration.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() return processor, model def load_ocr_trocr(): model_id = "microsoft/trocr-small-handwritten" # ~250 MB processor = TrOCRProcessor.from_pretrained(model_id) model = VisionEncoderDecoderModel.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu").eval() return processor, model def load_image_gen(): model_id = "OFA-Sys/small-stable-diffusion-v0" # ~300 MB pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32).to("cpu") return pipeline def load_line_drawer(): # Simplified OpenCV-based edge detection (CPU-friendly substitute for Torch Space UNet) def edge_detection(image): img_np = np.array(image.convert("RGB")) gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY) edges = cv2.Canny(gray, 100, 200) return Image.fromarray(edges) return edge_detection # Async Processing Functions async def process_ocr(image, prompt, model_name, output_file): start_time = time.time() status = st.empty() status.text(f"Processing {model_name} OCR... (0s)") if model_name == "Qwen2-VL-OCR-2B": processor, model = load_ocr_qwen2vl() # Corrected input format: apply chat template messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[text], images=[image], return_tensors="pt", padding=True).to("cpu") outputs = model.generate(**inputs, max_new_tokens=1024) result = processor.batch_decode(outputs, skip_special_tokens=True)[0] else: # TrOCR processor, model = load_ocr_trocr() pixel_values = processor(images=image, return_tensors="pt").pixel_values.to("cpu") outputs = model.generate(pixel_values) result = processor.batch_decode(outputs, skip_special_tokens=True)[0] elapsed = int(time.time() - start_time) status.text(f"{model_name} OCR completed in {elapsed}s!") async with aiofiles.open(output_file, "w") as f: await f.write(result) st.session_state['captured_images'].append(output_file) return result async def process_image_gen(prompt, output_file): start_time = time.time() status = st.empty() status.text("Processing Image Gen... (0s)") pipeline = load_image_gen() gen_image = pipeline(prompt, num_inference_steps=20).images[0] # Reduced steps for speed elapsed = int(time.time() - start_time) status.text(f"Image Gen completed in {elapsed}s!") gen_image.save(output_file) st.session_state['captured_images'].append(output_file) return gen_image async def process_line_drawing(image, output_file): start_time = time.time() status = st.empty() status.text("Processing Line Drawing... (0s)") edge_fn = load_line_drawer() line_drawing = edge_fn(image) elapsed = int(time.time() - start_time) status.text(f"Line Drawing completed in {elapsed}s!") line_drawing.save(output_file) st.session_state['captured_images'].append(output_file) return line_drawing # Main App st.title("AI Vision Titans 🚀 (OCR, Gen, Drawings!)") # Sidebar Gallery st.sidebar.header("Captured Images 🎨") gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4) update_gallery() st.sidebar.subheader("Action Logs 📜") log_container = st.sidebar.empty() with log_container: for record in log_records: st.write(f"{record.asctime} - {record.levelname} - {record.message}") # Tabs tab1, tab2, tab3, tab4 = st.tabs(["Camera Snap 📷", "Test OCR 🔍", "Test Image Gen 🎨", "Test Line Drawings ✏️"]) with tab1: st.header("Camera Snap 📷") st.subheader("Single Capture") cols = st.columns(2) with cols[0]: cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") if cam0_img: filename = generate_filename(0) if filename not in st.session_state['captured_images']: with open(filename, "wb") as f: f.write(cam0_img.getvalue()) st.image(Image.open(filename), caption=filename, use_container_width=True) logger.info(f"Saved snapshot from Camera 0: {filename}") st.session_state['captured_images'].append(filename) update_gallery() with cols[1]: cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") if cam1_img: filename = generate_filename(1) if filename not in st.session_state['captured_images']: with open(filename, "wb") as f: f.write(cam1_img.getvalue()) st.image(Image.open(filename), caption=filename, use_container_width=True) logger.info(f"Saved snapshot from Camera 1: {filename}") st.session_state['captured_images'].append(filename) update_gallery() st.subheader("Burst Capture") slice_count = st.number_input("Number of Frames", min_value=1, max_value=20, value=10, key="burst_count") if st.button("Start Burst Capture 📸"): st.session_state['burst_frames'] = [] placeholder = st.empty() for i in range(slice_count): with placeholder.container(): st.write(f"Capturing frame {i+1}/{slice_count}...") img = st.camera_input(f"Frame {i}", key=f"burst_{i}_{time.time()}") if img: filename = generate_filename(f"burst_{i}") if filename not in st.session_state['captured_images']: with open(filename, "wb") as f: f.write(img.getvalue()) st.session_state['burst_frames'].append(filename) logger.info(f"Saved burst frame {i}: {filename}") st.image(Image.open(filename), caption=filename, use_container_width=True) time.sleep(0.5) # Small delay for visibility st.session_state['captured_images'].extend([f for f in st.session_state['burst_frames'] if f not in st.session_state['captured_images']]) update_gallery() placeholder.success(f"Captured {len(st.session_state['burst_frames'])} frames!") with tab2: st.header("Test OCR 🔍") captured_images = get_gallery_files(["png"]) if captured_images: selected_image = st.selectbox("Select Image", captured_images, key="ocr_select") image = Image.open(selected_image) st.image(image, caption="Input Image", use_container_width=True) ocr_model = st.selectbox("Select OCR Model", ["Qwen2-VL-OCR-2B", "TrOCR-Small"], key="ocr_model_select") prompt = st.text_area("Prompt", "Extract text from the image", key="ocr_prompt") if st.button("Run OCR 🚀", key="ocr_run"): output_file = generate_filename("ocr_output", "txt") st.session_state['processing']['ocr'] = True result = asyncio.run(process_ocr(image, prompt, ocr_model, output_file)) st.text_area("OCR Result", result, height=200, key="ocr_result") st.success(f"OCR output saved to {output_file}") st.session_state['processing']['ocr'] = False else: st.warning("No images captured yet. Use Camera Snap first!") with tab3: st.header("Test Image Gen 🎨") captured_images = get_gallery_files(["png"]) if captured_images: selected_image = st.selectbox("Select Image", captured_images, key="gen_select") image = Image.open(selected_image) st.image(image, caption="Reference Image", use_container_width=True) prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt") if st.button("Run Image Gen 🚀", key="gen_run"): output_file = generate_filename("gen_output", "png") st.session_state['processing']['gen'] = True result = asyncio.run(process_image_gen(prompt, output_file)) st.image(result, caption="Generated Image", use_container_width=True) st.success(f"Image saved to {output_file}") st.session_state['processing']['gen'] = False else: st.warning("No images captured yet. Use Camera Snap first!") with tab4: st.header("Test Line Drawings ✏️") captured_images = get_gallery_files(["png"]) if captured_images: selected_image = st.selectbox("Select Image", captured_images, key="line_select") image = Image.open(selected_image) st.image(image, caption="Input Image", use_container_width=True) if st.button("Run Line Drawing 🚀", key="line_run"): output_file = generate_filename("line_output", "png") st.session_state['processing']['line'] = True result = asyncio.run(process_line_drawing(image, output_file)) st.image(result, caption="Line Drawing", use_container_width=True) st.success(f"Line drawing saved to {output_file}") st.session_state['processing']['line'] = False else: st.warning("No images captured yet. Use Camera Snap first!") # Initial Gallery Update update_gallery()