#!/usr/bin/env python3 import os import glob import base64 import time import shutil import streamlit as st import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel from diffusers import StableDiffusionPipeline from torch.utils.data import Dataset, DataLoader import csv import fitz # PyMuPDF import requests from PIL import Image import cv2 import numpy as np import logging import asyncio import aiofiles from io import BytesIO from dataclasses import dataclass from typing import Optional, Tuple import zipfile import math import random import re # Logging setup with custom buffer logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) log_records = [] class LogCaptureHandler(logging.Handler): def emit(self, record): log_records.append(record) logger.addHandler(LogCaptureHandler()) # Page Configuration st.set_page_config( page_title="AI Vision & SFT Titans πŸš€", page_icon="πŸ€–", layout="wide", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a Bug': 'https://huggingface.co/spaces/awacke1', 'About': "AI Vision & SFT Titans: PDFs, OCR, Image Gen, Line Drawings, Custom Diffusion, and SFT on CPU! 🌌" } ) # Initialize st.session_state if 'history' not in st.session_state: st.session_state['history'] = [] # Flat list for history if 'builder' not in st.session_state: st.session_state['builder'] = None if 'model_loaded' not in st.session_state: st.session_state['model_loaded'] = False if 'processing' not in st.session_state: st.session_state['processing'] = {} if 'pdf_checkboxes' not in st.session_state: st.session_state['pdf_checkboxes'] = {} # Shared cache for PDF checkboxes if 'downloaded_pdfs' not in st.session_state: st.session_state['downloaded_pdfs'] = {} # Cache for downloaded PDF paths # Model Configuration Classes @dataclass class ModelConfig: name: str base_model: str size: str domain: Optional[str] = None model_type: str = "causal_lm" @property def model_path(self): return f"models/{self.name}" @dataclass class DiffusionConfig: name: str base_model: str size: str @property def model_path(self): return f"diffusion_models/{self.name}" # Datasets class SFTDataset(Dataset): def __init__(self, data, tokenizer, max_length=128): self.data = data self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.data) def __getitem__(self, idx): prompt = self.data[idx]["prompt"] response = self.data[idx]["response"] full_text = f"{prompt} {response}" full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt") prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt") input_ids = full_encoding["input_ids"].squeeze() attention_mask = full_encoding["attention_mask"].squeeze() labels = input_ids.clone() prompt_len = prompt_encoding["input_ids"].shape[1] if prompt_len < self.max_length: labels[:prompt_len] = -100 return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} class DiffusionDataset(Dataset): def __init__(self, images, texts): self.images = images self.texts = texts def __len__(self): return len(self.images) def __getitem__(self, idx): return {"image": self.images[idx], "text": self.texts[idx]} class TinyDiffusionDataset(Dataset): def __init__(self, images): self.images = [torch.tensor(np.array(img.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32) / 255.0 for img in images] def __len__(self): return len(self.images) def __getitem__(self, idx): return self.images[idx] # Custom Tiny Diffusion Model class TinyUNet(nn.Module): def __init__(self, in_channels=3, out_channels=3): super(TinyUNet, self).__init__() self.down1 = nn.Conv2d(in_channels, 32, 3, padding=1) self.down2 = nn.Conv2d(32, 64, 3, padding=1, stride=2) self.mid = nn.Conv2d(64, 128, 3, padding=1) self.up1 = nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1) self.up2 = nn.Conv2d(64 + 32, 32, 3, padding=1) self.out = nn.Conv2d(32, out_channels, 3, padding=1) self.time_embed = nn.Linear(1, 64) def forward(self, x, t): t_embed = F.relu(self.time_embed(t.unsqueeze(-1))) t_embed = t_embed.view(t_embed.size(0), t_embed.size(1), 1, 1) x1 = F.relu(self.down1(x)) x2 = F.relu(self.down2(x1)) x_mid = F.relu(self.mid(x2)) + t_embed x_up1 = F.relu(self.up1(x_mid)) x_up2 = F.relu(self.up2(torch.cat([x_up1, x1], dim=1))) return self.out(x_up2) class TinyDiffusion: def __init__(self, model, timesteps=100): self.model = model self.timesteps = timesteps self.beta = torch.linspace(0.0001, 0.02, timesteps) self.alpha = 1 - self.beta self.alpha_cumprod = torch.cumprod(self.alpha, dim=0) def train(self, images, epochs=50): dataset = TinyDiffusionDataset(images) dataloader = DataLoader(dataset, batch_size=1, shuffle=True) optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4) device = torch.device("cpu") self.model.to(device) for epoch in range(epochs): total_loss = 0 for x in dataloader: x = x.to(device) t = torch.randint(0, self.timesteps, (x.size(0),), device=device).float() noise = torch.randn_like(x) alpha_t = self.alpha_cumprod[t.long()].view(-1, 1, 1, 1) x_noisy = torch.sqrt(alpha_t) * x + torch.sqrt(1 - alpha_t) * noise pred_noise = self.model(x_noisy, t) loss = F.mse_loss(pred_noise, noise) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() logger.info(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(dataloader):.4f}") return self def generate(self, size=(64, 64), steps=100): device = torch.device("cpu") x = torch.randn(1, 3, size[0], size[1], device=device) for t in reversed(range(steps)): t_tensor = torch.full((1,), t, device=device, dtype=torch.float32) alpha_t = self.alpha_cumprod[t].view(-1, 1, 1, 1) pred_noise = self.model(x, t_tensor) x = (x - (1 - self.alpha[t]) / torch.sqrt(1 - alpha_t) * pred_noise) / torch.sqrt(self.alpha[t]) if t > 0: x += torch.sqrt(self.beta[t]) * torch.randn_like(x) x = torch.clamp(x * 255, 0, 255).byte() return Image.fromarray(x.squeeze(0).permute(1, 2, 0).cpu().numpy()) def upscale(self, image, scale_factor=2): img_tensor = torch.tensor(np.array(image.convert("RGB")).transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0 upscaled = F.interpolate(img_tensor, scale_factor=scale_factor, mode='bilinear', align_corners=False) upscaled = torch.clamp(upscaled * 255, 0, 255).byte() return Image.fromarray(upscaled.squeeze(0).permute(1, 2, 0).cpu().numpy()) # Model Builders class ModelBuilder: def __init__(self): self.config = None self.model = None self.tokenizer = None self.sft_data = None self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! πŸ˜‚", "Training complete! Time for a binary coffee break. β˜•"] def load_model(self, model_path: str, config: Optional[ModelConfig] = None): with st.spinner(f"Loading {model_path}... ⏳"): self.model = AutoModelForCausalLM.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token if config: self.config = config self.model.to("cuda" if torch.cuda.is_available() else "cpu") st.success(f"Model loaded! πŸŽ‰ {random.choice(self.jokes)}") return self def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): self.sft_data = [] with open(csv_path, "r") as f: reader = csv.DictReader(f) for row in reader: self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) dataset = SFTDataset(self.sft_data, self.tokenizer) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) self.model.train() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(device) for epoch in range(epochs): with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βš™οΈ"): total_loss = 0 for batch in dataloader: optimizer.zero_grad() input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) labels = batch["labels"].to(device) outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) loss = outputs.loss loss.backward() optimizer.step() total_loss += loss.item() st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") st.success(f"SFT Fine-tuning completed! πŸŽ‰ {random.choice(self.jokes)}") return self def save_model(self, path: str): with st.spinner("Saving model... πŸ’Ύ"): os.makedirs(os.path.dirname(path), exist_ok=True) self.model.save_pretrained(path) self.tokenizer.save_pretrained(path) st.success(f"Model saved at {path}! βœ…") def evaluate(self, prompt: str, status_container=None): self.model.eval() if status_container: status_container.write("Preparing to evaluate... 🧠") try: with torch.no_grad(): inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) except Exception as e: if status_container: status_container.error(f"Oops! Something broke: {str(e)} πŸ’₯") return f"Error: {str(e)}" class DiffusionBuilder: def __init__(self): self.config = None self.pipeline = None def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): with st.spinner(f"Loading diffusion model {model_path}... ⏳"): self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") if config: self.config = config st.success(f"Diffusion model loaded! 🎨") return self def fine_tune_sft(self, images, texts, epochs=3): dataset = DiffusionDataset(images, texts) dataloader = DataLoader(dataset, batch_size=1, shuffle=True) optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) self.pipeline.unet.train() for epoch in range(epochs): with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... βš™οΈ"): total_loss = 0 for batch in dataloader: optimizer.zero_grad() image = batch["image"][0].to(self.pipeline.device) text = batch["text"][0] latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample() noise = torch.randn_like(latents) timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device) noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample loss = torch.nn.functional.mse_loss(pred_noise, noise) loss.backward() optimizer.step() total_loss += loss.item() st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") st.success("Diffusion SFT Fine-tuning completed! 🎨") return self def save_model(self, path: str): with st.spinner("Saving diffusion model... πŸ’Ύ"): os.makedirs(os.path.dirname(path), exist_ok=True) self.pipeline.save_pretrained(path) st.success(f"Diffusion model saved at {path}! βœ…") def generate(self, prompt: str): return self.pipeline(prompt, num_inference_steps=20).images[0] # Utility Functions def generate_filename(sequence, ext="png"): timestamp = time.strftime("%d%m%Y%H%M%S") return f"{sequence}_{timestamp}.{ext}" def pdf_url_to_filename(url): # Convert full URL to filename, replacing illegal characters safe_name = re.sub(r'[<>:"/\\|?*]', '_', url) return f"{safe_name}.pdf" def get_download_link(file_path, mime_type="application/pdf", label="Download"): with open(file_path, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() return f'{label}' def zip_directory(directory_path, zip_path): with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, _, files in os.walk(directory_path): for file in files: zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) def get_model_files(model_type="causal_lm"): path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" return [d for d in glob.glob(path) if os.path.isdir(d)] def get_gallery_files(file_types=["png"]): return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) def get_pdf_files(): return sorted(glob.glob("*.pdf")) def download_pdf(url, output_path): try: response = requests.get(url, stream=True, timeout=10) if response.status_code == 200: with open(output_path, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return True except requests.RequestException as e: logger.error(f"Failed to download {url}: {e}") return False # Async Processing Functions async def process_pdf_snapshot(pdf_path, mode="single"): start_time = time.time() status = st.empty() status.text(f"Processing PDF Snapshot ({mode})... (0s)") try: doc = fitz.open(pdf_path) output_files = [] if mode == "single": page = doc[0] pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale output_file = generate_filename("single", "png") pix.save(output_file) output_files.append(output_file) elif mode == "twopage": for i in range(min(2, len(doc))): page = doc[i] pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # High-res: 200% scale output_file = generate_filename(f"twopage_{i}", "png") pix.save(output_file) output_files.append(output_file) elif mode == "allthumbs": for i in range(len(doc)): page = doc[i] pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail: 50% scale output_file = generate_filename(f"thumb_{i}", "png") pix.save(output_file) output_files.append(output_file) doc.close() elapsed = int(time.time() - start_time) status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!") update_gallery() return output_files except Exception as e: status.error(f"Failed to process PDF: {str(e)}") return [] async def process_ocr(image, output_file): start_time = time.time() status = st.empty() status.text("Processing GOT-OCR2_0... (0s)") tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() result = model.chat(tokenizer, image, ocr_type='ocr') elapsed = int(time.time() - start_time) status.text(f"GOT-OCR2_0 completed in {elapsed}s!") async with aiofiles.open(output_file, "w") as f: await f.write(result) update_gallery() return result async def process_image_gen(prompt, output_file): start_time = time.time() status = st.empty() status.text("Processing Image Gen... (0s)") pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu") gen_image = pipeline(prompt, num_inference_steps=20).images[0] elapsed = int(time.time() - start_time) status.text(f"Image Gen completed in {elapsed}s!") gen_image.save(output_file) update_gallery() return gen_image async def process_custom_diffusion(images, output_file, model_name): start_time = time.time() status = st.empty() status.text(f"Training {model_name}... (0s)") unet = TinyUNet() diffusion = TinyDiffusion(unet) diffusion.train(images) gen_image = diffusion.generate() upscaled_image = diffusion.upscale(gen_image, scale_factor=2) elapsed = int(time.time() - start_time) status.text(f"{model_name} completed in {elapsed}s!") upscaled_image.save(output_file) update_gallery() return upscaled_image # Mock Search Tool for RAG def mock_search(query: str) -> str: if "superhero" in query.lower(): return "Latest trends: Gold-plated Batman statues, VR superhero battles." return "No relevant results found." def mock_duckduckgo_search(query: str) -> str: if "superhero party trends" in query.lower(): return """ Latest trends for 2025: - Luxury decorations: Gold-plated Batman statues, holographic Avengers displays. - Entertainment: Live stunt shows with Iron Man suits, VR superhero battles. - Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers. """ return "No relevant results found." # Agent Classes class PartyPlannerAgent: def __init__(self, model, tokenizer): self.model = model self.tokenizer = tokenizer self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) def generate(self, prompt: str) -> str: self.model.eval() with torch.no_grad(): inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) def plan_party(self, task: str) -> pd.DataFrame: search_result = mock_duckduckgo_search("latest superhero party trends") prompt = f"Given this context: '{search_result}'\n{task}" plan_text = self.generate(prompt) locations = { "Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060), "Los Angeles": (34.0522, -118.2437), "London": (51.5074, -0.1278) } wayne_coords = locations["Wayne Manor"] travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"} catchphrases = ["To the Batmobile!", "Avengers, assemble!", "I am Iron Man!", "By the power of Grayskull!"] data = [ {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)}, {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)}, {"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)}, {"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)}, {"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)}, {"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)}, ] return pd.DataFrame(data) class CVPartyPlannerAgent: def __init__(self, pipeline): self.pipeline = pipeline def generate(self, prompt: str) -> Image.Image: return self.pipeline(prompt, num_inference_steps=20).images[0] def plan_party(self, task: str) -> pd.DataFrame: search_result = mock_search("superhero party trends") prompt = f"Given this context: '{search_result}'\n{task}" data = [ {"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"}, {"Theme": "Avengers", "Image Idea": "VR superhero battle scene"} ] return pd.DataFrame(data) def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: def to_radians(degrees: float) -> float: return degrees * (math.pi / 180) lat1, lon1 = map(to_radians, origin_coords) lat2, lon2 = map(to_radians, destination_coords) EARTH_RADIUS_KM = 6371.0 dlon = lon2 - lon1 dlat = lat2 - lat1 a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) c = 2 * math.asin(math.sqrt(a)) distance = EARTH_RADIUS_KM * c actual_distance = distance * 1.1 flight_time = (actual_distance / cruising_speed_kmh) + 1.0 return round(flight_time, 2) # Main App st.title("AI Vision & SFT Titans πŸš€") # Sidebar st.sidebar.header("Captured Files πŸ“œ") gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 2) # Default to 2 def update_gallery(): media_files = get_gallery_files(["png"]) pdf_files = get_pdf_files() if media_files or pdf_files: st.sidebar.subheader("Images πŸ“Έ") cols = st.sidebar.columns(2) for idx, file in enumerate(media_files[:gallery_size * 2]): # Limit by gallery size with cols[idx % 2]: st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True) st.sidebar.subheader("PDF Downloads πŸ“–") for pdf_file in pdf_files[:gallery_size * 2]: # Limit by gallery size st.markdown(get_download_link(pdf_file, "application/pdf", f"πŸ“₯ Grab {os.path.basename(pdf_file)}"), unsafe_allow_html=True) update_gallery() st.sidebar.subheader("Model Management πŸ—‚οΈ") model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"], key="sidebar_model_type") model_dirs = get_model_files(model_type) selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs, key="sidebar_model_select") if selected_model != "None" and st.sidebar.button("Load Model πŸ“‚"): builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small") builder.load_model(selected_model, config) st.session_state['builder'] = builder st.session_state['model_loaded'] = True st.rerun() st.sidebar.subheader("Action Logs πŸ“œ") log_container = st.sidebar.empty() with log_container: for record in log_records: st.write(f"{record.asctime} - {record.levelname} - {record.message}") st.sidebar.subheader("History πŸ“œ") history_container = st.sidebar.empty() with history_container: for entry in st.session_state['history'][-gallery_size * 2:]: # Limit by gallery size st.write(entry) # Tabs tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs([ "Camera Snap πŸ“·", "Download PDFs πŸ“₯", "Build Titan 🌱", "Fine-Tune Titan πŸ”§", "Test Titan πŸ§ͺ", "Agentic RAG Party 🌐", "Test OCR πŸ”", "Test Image Gen 🎨", "Custom Diffusion πŸŽ¨πŸ€“" ]) with tab1: st.header("Camera Snap πŸ“·") st.subheader("Single Capture") cols = st.columns(2) with cols[0]: cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0") if cam0_img: filename = generate_filename("cam0") with open(filename, "wb") as f: f.write(cam0_img.getvalue()) entry = f"Snapshot from Cam 0: {filename}" if entry not in st.session_state['history']: st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 0:")] + [entry] st.image(Image.open(filename), caption="Camera 0", use_container_width=True) logger.info(f"Saved snapshot from Camera 0: {filename}") update_gallery() with cols[1]: cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1") if cam1_img: filename = generate_filename("cam1") with open(filename, "wb") as f: f.write(cam1_img.getvalue()) entry = f"Snapshot from Cam 1: {filename}" if entry not in st.session_state['history']: st.session_state['history'] = [e for e in st.session_state['history'] if not e.startswith("Snapshot from Cam 1:")] + [entry] st.image(Image.open(filename), caption="Camera 1", use_container_width=True) logger.info(f"Saved snapshot from Camera 1: {filename}") update_gallery() with tab2: st.header("Download PDFs πŸ“₯") # Examples button with arXiv PDF links from README.md if st.button("Examples πŸ“š"): example_urls = [ "https://arxiv.org/pdf/2308.03892", # Streamlit "https://arxiv.org/pdf/1912.01703", # PyTorch "https://arxiv.org/pdf/2408.11039", # Qwen2-VL "https://arxiv.org/pdf/2109.10282", # TrOCR "https://arxiv.org/pdf/2112.10752", # LDM "https://arxiv.org/pdf/2308.11236", # OpenCV "https://arxiv.org/pdf/1706.03762", # Attention is All You Need "https://arxiv.org/pdf/2006.11239", # DDPM "https://arxiv.org/pdf/2305.11207", # Pandas "https://arxiv.org/pdf/2106.09685", # LoRA "https://arxiv.org/pdf/2005.11401", # RAG "https://arxiv.org/pdf/2106.10504" # Fine-Tuning Vision Transformers ] st.session_state['pdf_urls'] = "\n".join(example_urls) # Robo-Downloader url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) if st.button("Robo-Download πŸ€–"): urls = url_input.strip().split("\n") progress_bar = st.progress(0) status_text = st.empty() total_urls = len(urls) existing_pdfs = get_pdf_files() for idx, url in enumerate(urls): if url: output_path = pdf_url_to_filename(url) status_text.text(f"Fetching {idx + 1}/{total_urls}: {os.path.basename(output_path)}...") if output_path not in existing_pdfs: if download_pdf(url, output_path): st.session_state['downloaded_pdfs'][url] = output_path logger.info(f"Downloaded PDF from {url} to {output_path}") entry = f"Downloaded PDF: {output_path}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) else: st.error(f"Failed to nab {url} 😿") else: st.info(f"Already got {os.path.basename(output_path)}! Skipping... 🐾") st.session_state['downloaded_pdfs'][url] = output_path progress_bar.progress((idx + 1) / total_urls) status_text.text("Robo-Download complete! πŸš€") update_gallery() # PDF Gallery with Thumbnails and Checkboxes st.subheader("PDF Gallery πŸ“–") downloaded_pdfs = list(st.session_state['downloaded_pdfs'].values()) if downloaded_pdfs: cols_per_row = 3 for i in range(0, len(downloaded_pdfs), cols_per_row): cols = st.columns(cols_per_row) for j, pdf_path in enumerate(downloaded_pdfs[i:i + cols_per_row]): with cols[j]: doc = fitz.open(pdf_path) page = doc[0] pix = page.get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) # Thumbnail at 50% scale img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) st.image(img, caption=os.path.basename(pdf_path), use_container_width=True) # Checkbox for SFT/Input use checkbox_key = f"pdf_{pdf_path}" st.session_state['pdf_checkboxes'][checkbox_key] = st.checkbox( "Use for SFT/Input", value=st.session_state['pdf_checkboxes'].get(checkbox_key, False), key=checkbox_key ) # Download and Delete Buttons st.markdown(get_download_link(pdf_path, "application/pdf", "Snag It! πŸ“₯"), unsafe_allow_html=True) if st.button("Zap It! πŸ—‘οΈ", key=f"delete_{pdf_path}"): os.remove(pdf_path) url_key = next((k for k, v in st.session_state['downloaded_pdfs'].items() if v == pdf_path), None) if url_key: del st.session_state['downloaded_pdfs'][url_key] del st.session_state['pdf_checkboxes'][checkbox_key] st.success(f"PDF {os.path.basename(pdf_path)} vaporized! πŸ’¨") st.rerun() doc.close() else: st.info("No PDFs captured yet. Feed the robo-downloader some URLs! πŸ€–") mode = st.selectbox("Snapshot Mode", ["Single Page (High-Res)", "Two Pages (High-Res)", "All Pages (Thumbnails)"], key="download_mode") if st.button("Snapshot Selected πŸ“Έ"): selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] if selected_pdfs: for pdf_path in selected_pdfs: mode_key = {"Single Page (High-Res)": "single", "Two Pages (High-Res)": "twopage", "All Pages (Thumbnails)": "allthumbs"}[mode] snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key)) for snapshot in snapshots: st.image(Image.open(snapshot), caption=snapshot, use_container_width=True) else: st.warning("No PDFs selected for snapshotting! Check some boxes first. πŸ“") with tab3: st.header("Build Titan 🌱") model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") base_model = st.selectbox("Select Tiny Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]) model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") domain = st.text_input("Target Domain", "general") if st.button("Download Model ⬇️"): config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small", domain=domain) builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() builder.load_model(base_model, config) builder.save_model(config.model_path) st.session_state['builder'] = builder st.session_state['model_loaded'] = True entry = f"Built {model_type} model: {model_name}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.success(f"Model downloaded and saved to {config.model_path}! πŸŽ‰") st.rerun() with tab4: st.header("Fine-Tune Titan πŸ”§") if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): st.warning("Please build or load a Titan first! ⚠️") else: if isinstance(st.session_state['builder'], ModelBuilder): if st.button("Generate Sample CSV πŸ“"): sample_data = [ {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."}, {"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."}, ] csv_path = f"sft_data_{int(time.time())}.csv" with open(csv_path, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) writer.writeheader() writer.writerows(sample_data) st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True) st.success(f"Sample CSV generated as {csv_path}! βœ…") uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv") if uploaded_csv and st.button("Fine-Tune with Uploaded CSV πŸ”„"): csv_path = f"uploaded_sft_data_{int(time.time())}.csv" with open(csv_path, "wb") as f: f.write(uploaded_csv.read()) new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain) st.session_state['builder'].config = new_config st.session_state['builder'].fine_tune_sft(csv_path) st.session_state['builder'].save_model(new_config.model_path) zip_path = f"{new_config.model_path}.zip" zip_directory(new_config.model_path, zip_path) entry = f"Fine-tuned Causal LM: {new_model_name}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True) st.rerun() elif isinstance(st.session_state['builder'], DiffusionBuilder): captured_files = get_gallery_files(["png"]) selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] if len(captured_files) + len(selected_pdfs) >= 2: demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_files] for pdf_path in selected_pdfs: demo_data.append({"image": pdf_path, "text": f"PDF {os.path.basename(pdf_path)}"}) edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic") if st.button("Fine-Tune with Dataset πŸ”„"): images = [Image.open(row["image"]) if row["image"].endswith('.png') else Image.frombytes("RGB", fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).size, fitz.open(row["image"])[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)).samples) for _, row in edited_data.iterrows()] texts = [row["text"] for _, row in edited_data.iterrows()] new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") st.session_state['builder'].config = new_config st.session_state['builder'].fine_tune_sft(images, texts) st.session_state['builder'].save_model(new_config.model_path) zip_path = f"{new_config.model_path}.zip" zip_directory(new_config.model_path, zip_path) entry = f"Fine-tuned Diffusion: {new_model_name}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True) csv_path = f"sft_dataset_{int(time.time())}.csv" with open(csv_path, "w", newline="") as f: writer = csv.writer(f) writer.writerow(["image", "text"]) for _, row in edited_data.iterrows(): writer.writerow([row["image"], row["text"]]) st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True) with tab5: st.header("Test Titan πŸ§ͺ") if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): st.warning("Please build or load a Titan first! ⚠️") else: if isinstance(st.session_state['builder'], ModelBuilder): if st.session_state['builder'].sft_data: st.write("Testing with SFT Data:") for item in st.session_state['builder'].sft_data[:3]: prompt = item["prompt"] expected = item["response"] status_container = st.empty() generated = st.session_state['builder'].evaluate(prompt, status_container) st.write(f"**Prompt**: {prompt}") st.write(f"**Expected**: {expected}") st.write(f"**Generated**: {generated}") st.write("---") status_container.empty() test_prompt = st.text_area("Enter Test Prompt", "What is AI?") if st.button("Run Test ▢️"): status_container = st.empty() result = st.session_state['builder'].evaluate(test_prompt, status_container) entry = f"Causal LM Test: {test_prompt} -> {result}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.write(f"**Generated Response**: {result}") status_container.empty() elif isinstance(st.session_state['builder'], DiffusionBuilder): test_prompt = st.text_area("Enter Test Prompt", "Neon Batman") selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] if st.button("Run Test ▢️"): image = st.session_state['builder'].generate(test_prompt) output_file = generate_filename("diffusion_test", "png") image.save(output_file) entry = f"Diffusion Test: {test_prompt} -> {output_file}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.image(image, caption="Generated Image") update_gallery() with tab6: st.header("Agentic RAG Party 🌐") if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): st.warning("Please build or load a Titan first! ⚠️") else: if isinstance(st.session_state['builder'], ModelBuilder): if st.button("Run NLP RAG Demo πŸŽ‰"): agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer) task = "Plan a luxury superhero-themed party at Wayne Manor." plan_df = agent.plan_party(task) entry = f"NLP RAG Demo: Planned party at Wayne Manor" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.dataframe(plan_df) elif isinstance(st.session_state['builder'], DiffusionBuilder): if st.button("Run CV RAG Demo πŸŽ‰"): agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline) task = "Generate images for a luxury superhero-themed party." plan_df = agent.plan_party(task) entry = f"CV RAG Demo: Generated party images" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.dataframe(plan_df) for _, row in plan_df.iterrows(): image = agent.generate(row["Image Idea"]) output_file = generate_filename(f"cv_rag_{row['Theme'].lower()}", "png") image.save(output_file) st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}") update_gallery() with tab7: st.header("Test OCR πŸ”") captured_files = get_gallery_files(["png"]) selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] all_files = captured_files + selected_pdfs if all_files: selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select") if selected_file: if selected_file.endswith('.png'): image = Image.open(selected_file) else: doc = fitz.open(selected_file) pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) doc.close() st.image(image, caption="Input Image", use_container_width=True) if st.button("Run OCR πŸš€", key="ocr_run"): output_file = generate_filename("ocr_output", "txt") st.session_state['processing']['ocr'] = True result = asyncio.run(process_ocr(image, output_file)) entry = f"OCR Test: {selected_file} -> {output_file}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.text_area("OCR Result", result, height=200, key="ocr_result") st.success(f"OCR output saved to {output_file}") st.session_state['processing']['ocr'] = False else: st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!") with tab8: st.header("Test Image Gen 🎨") captured_files = get_gallery_files(["png"]) selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] all_files = captured_files + selected_pdfs if all_files: selected_file = st.selectbox("Select Image or PDF", all_files, key="gen_select") if selected_file: if selected_file.endswith('.png'): image = Image.open(selected_file) else: doc = fitz.open(selected_file) pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) doc.close() st.image(image, caption="Reference Image", use_container_width=True) prompt = st.text_area("Prompt", "Generate a similar superhero image", key="gen_prompt") if st.button("Run Image Gen πŸš€", key="gen_run"): output_file = generate_filename("gen_output", "png") st.session_state['processing']['gen'] = True result = asyncio.run(process_image_gen(prompt, output_file)) entry = f"Image Gen Test: {prompt} -> {output_file}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.image(result, caption="Generated Image", use_container_width=True) st.success(f"Image saved to {output_file}") st.session_state['processing']['gen'] = False else: st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first WAV!") with tab9: st.header("Custom Diffusion πŸŽ¨πŸ€“") st.write("Unleash your inner artist with our tiny diffusion models!") captured_files = get_gallery_files(["png"]) selected_pdfs = [path for key, path in st.session_state['downloaded_pdfs'].items() if st.session_state['pdf_checkboxes'].get(f"pdf_{path}", False)] all_files = captured_files + selected_pdfs if all_files: st.subheader("Select Images or PDFs to Train") selected_files = st.multiselect("Pick Images or PDFs", all_files, key="diffusion_select") images = [] for file in selected_files: if file.endswith('.png'): images.append(Image.open(file)) else: doc = fitz.open(file) pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) images.append(Image.frombytes("RGB", [pix.width, pix.height], pix.samples)) doc.close() model_options = [ ("PixelTickler 🎨✨", "OFA-Sys/small-stable-diffusion-v0"), ("DreamWeaver πŸŒ™πŸ–ŒοΈ", "stabilityai/stable-diffusion-2-base"), ("TinyArtBot πŸ€–πŸ–ΌοΈ", "custom") ] model_choice = st.selectbox("Choose Your Diffusion Dynamo", [opt[0] for opt in model_options], key="diffusion_model") model_name = next(opt[1] for opt in model_options if opt[0] == model_choice) if st.button("Train & Generate πŸš€", key="diffusion_run"): output_file = generate_filename("custom_diffusion", "png") st.session_state['processing']['diffusion'] = True if model_name == "custom": result = asyncio.run(process_custom_diffusion(images, output_file, model_choice)) else: builder = DiffusionBuilder() builder.load_model(model_name) result = builder.generate("A superhero scene inspired by captured images") result.save(output_file) entry = f"Custom Diffusion: {model_choice} -> {output_file}" if entry not in st.session_state['history']: st.session_state['history'].append(entry) st.image(result, caption=f"{model_choice} Masterpiece", use_container_width=True) st.success(f"Image saved to {output_file}") st.session_state['processing']['diffusion'] = False else: st.warning("No images or PDFs captured yet. Use Camera Snap or Download PDFs first!") # Initial Gallery Update update_gallery()