File size: 7,292 Bytes
912ec24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python3
import os
import re
import glob
import streamlit as st
import streamlit.components.v1 as components
from transformers import pipeline
from urllib.parse import quote
from datetime import datetime
import pytz
import base64
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

st.set_page_config(page_title="AI Knowledge Tree Builder πŸ“ˆπŸŒΏ", page_icon="🌳✨", layout="wide")

trees = {
    "Biology": """
0. Biology Core Rules and Future Exceptions
1. Central Dogma DNA RNA Protein
- Current CRISPR RNA editing πŸ§ͺ
- Research Gene therapy siRNA πŸ”¬
- Future Programmable genetics πŸš€
    """,
    "AI Topics": """
1. Major AI Industry Players 🌐
   1. Research Leaders 🎯
      - OpenAI: GPT-4 DALL-E Foundation Models πŸ”΅
    """
}

def parse_outline_to_mermaid(outline_text):
    lines = outline_text.strip().split('\n')
    nodes, edges, clicks, stack = [], [], [], []
    for line in lines:
        indent = len(line) - len(line.lstrip())
        level = indent // 4
        label = re.sub(r'^[#*\->\d\.\s]+', '', line.strip())
        if label:
            node_id = f"N{len(nodes)}"
            nodes.append(f'{node_id}["{label}"]')
            clicks.append(f'click {node_id} "?q={quote(label)}" _blank')
            if stack:
                parent_level = stack[-1][0]
                if level > parent_level:
                    edges.append(f"{stack[-1][1]} --> {node_id}")
                    stack.append((level, node_id))
                else:
                    while stack and stack[-1][0] >= level:
                        stack.pop()
                    if stack:
                        edges.append(f"{stack[-1][1]} --> {node_id}")
                    stack.append((level, node_id))
            else:
                stack.append((level, node_id))
    return "%%{init: {'themeVariables': {'fontSize': '18px'}}}%%\nflowchart LR\n" + "\n".join(nodes + edges + clicks)

def generate_mermaid_html(mermaid_code):
    return f"""
    <html><head><script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
    <style>.centered-mermaid{{display:flex;justify-content:center;margin:20px auto;}}</style></head>
    <body><div class="mermaid centered-mermaid">{mermaid_code}</div>
    <script>mermaid.initialize({{startOnLoad:true}});</script></body></html>
    """

def grow_tree(base_tree, new_node_name, parent_node):
    lines = base_tree.strip().split('\n')
    new_lines = []
    added = False
    for line in lines:
        new_lines.append(line)
        if parent_node in line and not added:
            indent = len(line) - len(line.lstrip())
            new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} 🌱")
            added = True
    return "\n".join(new_lines)

def get_download_link(file_path, mime_type="text/plain"):
    with open(file_path, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    return f'<a href="data:{mime_type};base64,{b64}" download="{file_path}">Download {file_path}</a>'

@st.cache_resource
def load_generator():
    return pipeline("text-generation", model="distilgpt2")

# Main App
st.title("🌳 AI Knowledge Tree Builder 🌱")

if 'current_tree' not in st.session_state:
    if os.path.exists("current_tree.md"):
        with open("current_tree.md", "r") as f:
            st.session_state['current_tree'] = f.read()
    else:
        st.session_state['current_tree'] = trees["Biology"]

selected_tree = st.selectbox("Select Knowledge Tree", list(trees.keys()))
if selected_tree != st.session_state.get('selected_tree_name', 'Biology'):
    st.session_state['current_tree'] = trees[selected_tree]
    st.session_state['selected_tree_name'] = selected_tree
    with open("current_tree.md", "w") as f:
        f.write(st.session_state['current_tree'])

new_node = st.text_input("Add New Node")
parent_node = st.text_input("Parent Node")
if st.button("Grow Tree 🌱") and new_node and parent_node:
    st.session_state['current_tree'] = grow_tree(st.session_state['current_tree'], new_node, parent_node)
    with open("current_tree.md", "w") as f:
        f.write(st.session_state['current_tree'])
    st.success(f"Added '{new_node}' under '{parent_node}'!")

st.markdown("### Knowledge Tree Visualization")
mermaid_code = parse_outline_to_mermaid(st.session_state['current_tree'])
components.html(generate_mermaid_html(mermaid_code), height=600)

if st.button("Export Tree as Markdown"):
    export_md = f"# Knowledge Tree\n\n## Outline\n{st.session_state['current_tree']}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
    with open("knowledge_tree.md", "w") as f:
        f.write(export_md)
    st.markdown(get_download_link("knowledge_tree.md", "text/markdown"), unsafe_allow_html=True)

st.subheader("Build ML Model from CSV")
uploaded_file = st.file_uploader("Upload CSV", type="csv")
if uploaded_file:
    df = pd.read_csv(uploaded_file)
    st.write("Columns:", df.columns.tolist())
    feature_cols = st.multiselect("Select feature columns", df.columns)
    target_col = st.selectbox("Select target column", df.columns)
    if st.button("Train Model"):
        X = df[feature_cols].values
        y = df[target_col].values
        X_tensor = torch.tensor(X, dtype=torch.float32)
        y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
        dataset = TensorDataset(X_tensor, y_tensor)
        loader = DataLoader(dataset, batch_size=32, shuffle=True)
        model = nn.Linear(X.shape[1], 1)
        criterion = nn.MSELoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)
        for epoch in range(10):
            for batch_X, batch_y in loader:
                optimizer.zero_grad()
                outputs = model(batch_X)
                loss = criterion(outputs, batch_y)
                loss.backward()
                optimizer.step()
        torch.save(model.state_dict(), "model.pth")
        app_code = f"""
import streamlit as st
import torch
import torch.nn as nn

model = nn.Linear({len(feature_cols)}, 1)
model.load_state_dict(torch.load("model.pth"))
model.eval()

st.title("ML Model Demo")
inputs = []
for col in {feature_cols}:
    inputs.append(st.number_input(col))
if st.button("Predict"):
    input_tensor = torch.tensor([inputs], dtype=torch.float32)
    prediction = model(input_tensor).item()
    st.write(f"Predicted {target_col}: {{prediction}}")
"""
        with open("app.py", "w") as f:
            f.write(app_code)
        reqs = "streamlit\ntorch\npandas\n"
        with open("requirements.txt", "w") as f:
            f.write(reqs)
        readme = """
# ML Model Demo

## How to run
1. Install requirements: `pip install -r requirements.txt`
2. Run the app: `streamlit run app.py`
3. Input feature values and click "Predict".
"""
        with open("README.md", "w") as f:
            f.write(readme)
        st.markdown(get_download_link("model.pth", "application/octet-stream"), unsafe_allow_html=True)
        st.markdown(get_download_link("app.py", "text/plain"), unsafe_allow_html=True)
        st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True)
        st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True)