File size: 18,681 Bytes
d8d14b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
#!/usr/bin/env python3
import os
import re
import streamlit as st
import streamlit.components.v1 as components
from urllib.parse import quote
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import base64
import glob
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
from mergekit.config import MergeConfiguration
from mergekit.merge import Mergekit
from spectrum import SpectrumAnalyzer
import distilkit
import yaml
from dataclasses import dataclass
from typing import Optional, List
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Page Configuration
st.set_page_config(
page_title="AI Knowledge Tree Builder ๐๐ฟ",
page_icon="๐ณโจ",
layout="wide",
initial_sidebar_state="auto",
)
# Predefined Knowledge Trees
trees = {
"ML Engineering": """
0. ML Engineering ๐
1. Data Preparation
- Load Data ๐
- Preprocess Data ๐ ๏ธ
2. Model Building
- Train Model ๐ค
- Evaluate Model ๐
3. Deployment
- Deploy Model ๐
""",
"Health": """
0. Health and Wellness ๐ฟ
1. Physical Health
- Exercise ๐๏ธ
- Nutrition ๐
2. Mental Health
- Meditation ๐ง
- Therapy ๐๏ธ
""",
}
# Project Seeds
project_seeds = {
"Code Project": """
0. Code Project ๐
1. app.py ๐
2. requirements.txt ๐ฆ
3. README.md ๐
""",
"Papers Project": """
0. Papers Project ๐
1. markdown ๐
2. mermaid ๐ผ๏ธ
3. huggingface.co ๐ค
""",
"AI Project": """
0. AI Project ๐ค
1. Streamlit Torch Transformers
- Streamlit ๐
- Torch ๐ฅ
- Transformers ๐ค
2. DistillKit MergeKit Spectrum
- DistillKit ๐งช
- MergeKit ๐
- Spectrum ๐
3. Transformers Diffusers Datasets
- Transformers ๐ค
- Diffusers ๐จ
- Datasets ๐
""",
}
# Meta class for model configuration
class ModelMeta(type):
def __new__(cls, name, bases, attrs):
attrs['registry'] = {}
return super().__new__(cls, name, bases, attrs)
# Base Model Configuration Class
@dataclass
class ModelConfig(metaclass=ModelMeta):
name: str
base_model: str
size: str
domain: Optional[str] = None
def __init_subclass__(cls):
ModelConfig.registry[cls.__name__] = cls
@property
def model_path(self):
return f"models/{self.name}"
# Decorator for pipeline stages
def pipeline_stage(func):
def wrapper(*args, **kwargs):
st.spinner(f"Running {func.__name__}...")
result = func(*args, **kwargs)
st.success(f"Completed {func.__name__}!")
return result
return wrapper
# Model Builder Class
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
@pipeline_stage
def load_base_model(self, model_name: str):
"""Load base model from Hugging Face"""
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
return self
@pipeline_stage
def apply_distillation(self, teacher_model: str, output_dir: str):
"""Apply DistilKit for model distillation"""
distiller = distilkit.Distiller(
teacher_model=teacher_model,
student_model=self.model,
tokenizer=self.tokenizer
)
distiller.distill(output_dir=output_dir)
self.model = distiller.student_model
return self
@pipeline_stage
def apply_merge(self, models_to_merge: List[str], output_dir: str):
"""Apply Mergekit for model merging"""
merge_config = MergeConfiguration(
models=models_to_merge,
merge_method="linear",
output_dir=output_dir
)
merger = Mergekit(merge_config)
merger.run()
self.model = AutoModelForCausalLM.from_pretrained(output_dir)
return self
@pipeline_stage
def apply_spectrum(self, domain_data: str):
"""Apply Spectrum for domain specialization"""
analyzer = SpectrumAnalyzer(self.model)
analyzer.fit(domain_data)
self.model = analyzer.specialized_model
return self
def save_model(self, path: str):
"""Save the final model"""
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
# Utility Functions
def sanitize_label(label):
"""Remove invalid characters for Mermaid labels."""
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')
def sanitize_filename(label):
"""Make a valid filename from a label."""
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')
def parse_outline_to_mermaid(outline_text, search_agent):
"""Convert tree outline to Mermaid syntax with clickable nodes."""
lines = outline_text.strip().split('\n')
nodes, edges, clicks, stack = [], [], [], []
for line in lines:
indent = len(line) - len(line.lstrip())
level = indent // 4
label = re.sub(r'^[#*\->\d\.\s]+', '', line.strip())
if label:
node_id = f"N{len(nodes)}"
sanitized_label = sanitize_label(label)
nodes.append(f'{node_id}["{label}"]')
search_url = search_urls[search_agent](label)
clicks.append(f'click {node_id} "{search_url}" _blank')
if stack:
parent_level = stack[-1][0]
if level > parent_level:
edges.append(f"{stack[-1][1]} --> {node_id}")
stack.append((level, node_id))
else:
while stack and stack[-1][0] >= level:
stack.pop()
if stack:
edges.append(f"{stack[-1][1]} --> {node_id}")
stack.append((level, node_id))
else:
stack.append((level, node_id))
return "%%{init: {'themeVariables': {'fontSize': '18px'}}}%%\nflowchart LR\n" + "\n".join(nodes + edges + clicks)
def generate_mermaid_html(mermaid_code):
"""Generate HTML to display Mermaid diagram."""
return f"""
<html><head><script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>.centered-mermaid{{display:flex;justify-content:center;margin:20px auto;}}</style></head>
<body><div class="mermaid centered-mermaid">{mermaid_code}</div>
<script>mermaid.initialize({{startOnLoad:true}});</script></body></html>
"""
def grow_tree(base_tree, new_node_name, parent_node):
"""Add a new node to the tree under a specified parent."""
lines = base_tree.strip().split('\n')
new_lines = []
added = False
for line in lines:
new_lines.append(line)
if parent_node in line and not added:
indent = len(line) - len(line.lstrip())
new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} ๐ฑ")
added = True
return "\n".join(new_lines)
def get_download_link(file_path, mime_type="text/plain"):
"""Generate a download link for a file."""
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{file_path}">Download {file_path}</a>'
def save_tree_to_file(tree_text, parent_node, new_node):
"""Save tree to a markdown file with name based on nodes."""
root_node = tree_text.strip().split('\n')[0].split('.')[1].strip() if tree_text.strip() else "Knowledge_Tree"
filename = f"{sanitize_filename(root_node)}_{sanitize_filename(parent_node)}_{sanitize_filename(new_node)}_{int(time.time())}.md"
mermaid_code = parse_outline_to_mermaid(tree_text, "๐ฎGoogle") # Default search engine for saved trees
export_md = f"# Knowledge Tree: {root_node}\n\n## Outline\n{tree_text}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
with open(filename, "w") as f:
f.write(export_md)
return filename
def load_trees_from_files():
"""Load all saved tree markdown files."""
tree_files = glob.glob("*.md")
trees_dict = {}
for file in tree_files:
if file != "README.md" and file != "knowledge_tree.md": # Skip project README and temp export
try:
with open(file, 'r') as f:
content = f.read()
# Extract the tree name from the first line
match = re.search(r'# Knowledge Tree: (.*)', content)
if match:
tree_name = match.group(1)
else:
tree_name = os.path.splitext(file)[0]
# Extract the outline section
outline_match = re.search(r'## Outline\n(.*?)(?=\n## |$)', content, re.DOTALL)
if outline_match:
tree_outline = outline_match.group(1).strip()
trees_dict[f"{tree_name} ({file})"] = tree_outline
except Exception as e:
print(f"Error loading {file}: {e}")
return trees_dict
# Search Agents (Highest resolution social network default: X)
search_urls = {
"๐๐ArXiv": lambda k: f"/?q={quote(k)}",
"๐ฎGoogle": lambda k: f"https://www.google.com/search?q={quote(k)}",
"๐บYoutube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐ญBing": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐กTruth": lambda k: f"https://truthsocial.com/search?q={quote(k)}",
"๐ฑX": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
# Main App
st.title("๐ณ AI Knowledge Tree Builder ๐ฑ")
# Sidebar with saved trees
st.sidebar.title("Saved Trees")
saved_trees = load_trees_from_files()
selected_saved_tree = st.sidebar.selectbox("Select a saved tree", ["None"] + list(saved_trees.keys()))
# Select Project Type
project_type = st.selectbox("Select Project Type", ["Code Project", "Papers Project", "AI Project"])
# Initialize or load tree
if 'current_tree' not in st.session_state:
if selected_saved_tree != "None" and selected_saved_tree in saved_trees:
st.session_state['current_tree'] = saved_trees[selected_saved_tree]
else:
st.session_state['current_tree'] = trees.get("ML Engineering", project_seeds[project_type])
elif selected_saved_tree != "None" and selected_saved_tree in saved_trees:
st.session_state['current_tree'] = saved_trees[selected_saved_tree]
# Select Search Agent for Node Links
search_agent = st.selectbox("Select Search Agent for Node Links", list(search_urls.keys()), index=5) # Default to X
# Tree Growth
new_node = st.text_input("Add New Node")
parent_node = st.text_input("Parent Node")
if st.button("Grow Tree ๐ฑ") and new_node and parent_node:
st.session_state['current_tree'] = grow_tree(st.session_state['current_tree'], new_node, parent_node)
# Save to a new file with the node names
saved_file = save_tree_to_file(st.session_state['current_tree'], parent_node, new_node)
st.success(f"Added '{new_node}' under '{parent_node}' and saved to {saved_file}!")
# Also update the temporary current_tree.md for compatibility
with open("current_tree.md", "w") as f:
f.write(st.session_state['current_tree'])
# Display Mermaid Diagram
st.markdown("### Knowledge Tree Visualization")
mermaid_code = parse_outline_to_mermaid(st.session_state['current_tree'], search_agent)
components.html(generate_mermaid_html(mermaid_code), height=600)
# Export Tree
if st.button("Export Tree as Markdown"):
export_md = f"# Knowledge Tree\n\n## Outline\n{st.session_state['current_tree']}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
with open("knowledge_tree.md", "w") as f:
f.write(export_md)
st.markdown(get_download_link("knowledge_tree.md", "text/markdown"), unsafe_allow_html=True)
# AI Project: Model Building Options
if project_type == "AI Project":
st.subheader("AI Model Building Options")
model_option = st.radio("Choose Model Building Method", ["Minimal ML Model from CSV", "Advanced Model Pipeline"])
if model_option == "Minimal ML Model from CSV":
st.write("### Build Minimal ML Model from CSV")
uploaded_file = st.file_uploader("Upload CSV", type="csv")
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.write("Columns:", df.columns.tolist())
feature_cols = st.multiselect("Select feature columns", df.columns)
target_col = st.selectbox("Select target column", df.columns)
if st.button("Train Model"):
X = df[feature_cols].values
y = df[target_col].values
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
dataset = TensorDataset(X_tensor, y_tensor)
loader = DataLoader(dataset, batch_size=32, shuffle=True)
model = nn.Linear(X.shape[1], 1)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
for epoch in range(10):
for batch_X, batch_y in loader:
optimizer.zero_grad()
outputs = model(batch_X)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
torch.save(model.state_dict(), "model.pth")
app_code = f"""
import streamlit as st
import torch
import torch.nn as nn
model = nn.Linear({len(feature_cols)}, 1)
model.load_state_dict(torch.load("model.pth"))
model.eval()
st.title("ML Model Demo")
inputs = []
for col in {feature_cols}:
inputs.append(st.number_input(col))
if st.button("Predict"):
input_tensor = torch.tensor([inputs], dtype=torch.float32)
prediction = model(input_tensor).item()
st.write(f"Predicted {target_col}: {{prediction}}")
"""
with open("app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\npandas\n"
with open("requirements.txt", "w") as f:
f.write(reqs)
readme = """
# ML Model Demo
## How to run
1. Install requirements: `pip install -r requirements.txt`
2. Run the app: `streamlit run app.py`
3. Input feature values and click "Predict".
"""
with open("README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("model.pth", "application/octet-stream"), unsafe_allow_html=True)
st.markdown(get_download_link("app.py", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True)
elif model_option == "Advanced Model Pipeline":
st.write("### Advanced Model Building Pipeline")
# Model Configuration
with st.expander("Model Configuration", expanded=True):
base_model = st.selectbox(
"Select Base Model",
["mistral-7b", "llama-2-7b", "gpt2-medium"]
)
model_name = st.text_input("Model Name", "custom-model")
domain = st.text_input("Target Domain", "general")
use_distillation = st.checkbox("Apply Distillation", True)
use_merging = st.checkbox("Apply Model Merging", False)
use_spectrum = st.checkbox("Apply Spectrum Specialization", True)
# Build Model
if st.button("Build Advanced Model"):
config = ModelConfig(
name=model_name,
base_model=base_model,
size="7B",
domain=domain
)
builder = ModelBuilder()
with st.status("Building advanced model...", expanded=True) as status:
builder.load_base_model(config.base_model)
if use_distillation:
teacher_model = st.selectbox(
"Select Teacher Model",
["mistral-13b", "llama-2-13b"]
)
builder.apply_distillation(teacher_model, f"distilled_{config.name}")
if use_merging:
models_to_merge = st.multiselect(
"Select Models to Merge",
["mistral-7b", "llama-2-7b", "gpt2-medium"]
)
builder.apply_merge(models_to_merge, f"merged_{config.name}")
if use_spectrum:
domain_data = st.text_area("Enter domain-specific data", "Sample domain data")
builder.apply_spectrum(domain_data)
builder.save_model(config.model_path)
status.update(label="Advanced model built successfully!", state="complete")
# Generate deployment files
app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
st.title("Advanced Model Demo")
input_text = st.text_area("Enter text")
if st.button("Generate"):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
with open("advanced_app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\ntransformers\n"
with open("advanced_requirements.txt", "w") as f:
f.write(reqs)
readme = f"""
# Advanced Model Demo
## How to run
1. Install requirements: `pip install -r advanced_requirements.txt`
2. Run the app: `streamlit run advanced_app.py`
3. Input text and click "Generate".
"""
with open("advanced_README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("advanced_app.py", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("advanced_requirements.txt", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("advanced_README.md", "text/markdown"), unsafe_allow_html=True)
st.write(f"Model saved at: {config.model_path}")
if __name__ == "__main__":
st.run() |