|
|
|
import os |
|
import re |
|
import streamlit as st |
|
import streamlit.components.v1 as components |
|
from urllib.parse import quote |
|
import pandas as pd |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from torch.utils.data import DataLoader, TensorDataset |
|
import base64 |
|
import glob |
|
import time |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
|
|
st.set_page_config( |
|
page_title="AI Knowledge Tree Builder 📈🌿", |
|
page_icon="🌳✨", |
|
layout="wide", |
|
initial_sidebar_state="auto", |
|
) |
|
|
|
|
|
trees = { |
|
"ML Engineering": """ |
|
0. ML Engineering 🌐 |
|
1. Data Preparation |
|
- Load Data 📊 |
|
- Preprocess Data 🛠️ |
|
2. Model Building |
|
- Train Model 🤖 |
|
- Evaluate Model 📈 |
|
3. Deployment |
|
- Deploy Model 🚀 |
|
""", |
|
"Health": """ |
|
0. Health and Wellness 🌿 |
|
1. Physical Health |
|
- Exercise 🏋️ |
|
- Nutrition 🍎 |
|
2. Mental Health |
|
- Meditation 🧘 |
|
- Therapy 🛋️ |
|
""", |
|
} |
|
|
|
|
|
project_seeds = { |
|
"Code Project": """ |
|
0. Code Project 📂 |
|
1. app.py 🐍 |
|
2. requirements.txt 📦 |
|
3. README.md 📄 |
|
""", |
|
"Papers Project": """ |
|
0. Papers Project 📚 |
|
1. markdown 📝 |
|
2. mermaid 🖼️ |
|
3. huggingface.co 🤗 |
|
""", |
|
"AI Project": """ |
|
0. AI Project 🤖 |
|
1. Streamlit Torch Transformers |
|
- Streamlit 🌐 |
|
- Torch 🔥 |
|
- Transformers 🤖 |
|
2. SFT Fine-Tuning |
|
- SFT 🤓 |
|
- Small Models 📉 |
|
""", |
|
} |
|
|
|
|
|
class ModelMeta(type): |
|
def __new__(cls, name, bases, attrs): |
|
attrs['registry'] = {} |
|
return super().__new__(cls, name, bases, attrs) |
|
|
|
|
|
@dataclass |
|
class ModelConfig(metaclass=ModelMeta): |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
|
|
def __init_subclass__(cls): |
|
ModelConfig.registry[cls.__name__] = cls |
|
|
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
|
|
class SFTDataset(Dataset): |
|
def __init__(self, data, tokenizer, max_length=128): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
prompt = self.data[idx]["prompt"] |
|
response = self.data[idx]["response"] |
|
input_text = f"{prompt} {response}" |
|
encoding = self.tokenizer( |
|
input_text, |
|
max_length=self.max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt" |
|
) |
|
return { |
|
"input_ids": encoding["input_ids"].squeeze(), |
|
"attention_mask": encoding["attention_mask"].squeeze(), |
|
"labels": encoding["input_ids"].squeeze() |
|
} |
|
|
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.sft_data = None |
|
|
|
def load_base_model(self, model_name: str): |
|
"""Load base model from Hugging Face""" |
|
with st.spinner("Loading base model..."): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_name) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
st.success("Base model loaded!") |
|
return self |
|
|
|
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): |
|
"""Perform Supervised Fine-Tuning with CSV data""" |
|
|
|
self.sft_data = [] |
|
with open(csv_path, "r") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) |
|
|
|
|
|
dataset = SFTDataset(self.sft_data, self.tokenizer) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
|
|
|
|
optimizer = optim.AdamW(self.model.parameters(), lr=2e-5) |
|
|
|
|
|
self.model.train() |
|
for epoch in range(epochs): |
|
with st.spinner(f"Training epoch {epoch + 1}/{epochs}..."): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
input_ids = batch["input_ids"].to(self.model.device) |
|
attention_mask = batch["attention_mask"].to(self.model.device) |
|
labels = batch["labels"].to(self.model.device) |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
labels=labels |
|
) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
st.success("SFT Fine-tuning completed!") |
|
return self |
|
|
|
def save_model(self, path: str): |
|
"""Save the fine-tuned model""" |
|
with st.spinner("Saving model..."): |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success("Model saved!") |
|
|
|
def evaluate(self, prompt: str): |
|
"""Evaluate the model with a prompt""" |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=50) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
def sanitize_label(label): |
|
"""Remove invalid characters for Mermaid labels.""" |
|
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_') |
|
|
|
def sanitize_filename(label): |
|
"""Make a valid filename from a label.""" |
|
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_') |
|
|
|
def parse_outline_to_mermaid(outline_text, search_agent): |
|
"""Convert tree outline to Mermaid syntax with clickable nodes.""" |
|
lines = outline_text.strip().split('\n') |
|
nodes, edges, clicks, stack = [], [], [], [] |
|
for line in lines: |
|
indent = len(line) - len(line.lstrip()) |
|
level = indent // 4 |
|
label = re.sub(r'^[#*\->\d\.\s]+', '', line.strip()) |
|
if label: |
|
node_id = f"N{len(nodes)}" |
|
sanitized_label = sanitize_label(label) |
|
nodes.append(f'{node_id}["{label}"]') |
|
search_url = search_urls[search_agent](label) |
|
clicks.append(f'click {node_id} "{search_url}" _blank') |
|
if stack: |
|
parent_level = stack[-1][0] |
|
if level > parent_level: |
|
edges.append(f"{stack[-1][1]} --> {node_id}") |
|
stack.append((level, node_id)) |
|
else: |
|
while stack and stack[-1][0] >= level: |
|
stack.pop() |
|
if stack: |
|
edges.append(f"{stack[-1][1]} --> {node_id}") |
|
stack.append((level, node_id)) |
|
else: |
|
stack.append((level, node_id)) |
|
return "%%{init: {'themeVariables': {'fontSize': '18px'}}}%%\nflowchart LR\n" + "\n".join(nodes + edges + clicks) |
|
|
|
def generate_mermaid_html(mermaid_code): |
|
"""Generate HTML to display Mermaid diagram.""" |
|
return f""" |
|
<html><head><script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> |
|
<style>.centered-mermaid{{display:flex;justify-content:center;margin:20px auto;}}</style></head> |
|
<body><div class="mermaid centered-mermaid">{mermaid_code}</div> |
|
<script>mermaid.initialize({{startOnLoad:true}});</script></body></html> |
|
""" |
|
|
|
def grow_tree(base_tree, new_node_name, parent_node): |
|
"""Add a new node to the tree under a specified parent.""" |
|
lines = base_tree.strip().split('\n') |
|
new_lines = [] |
|
added = False |
|
for line in lines: |
|
new_lines.append(line) |
|
if parent_node in line and not added: |
|
indent = len(line) - len(line.lstrip()) |
|
new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} 🌱") |
|
added = True |
|
return "\n".join(new_lines) |
|
|
|
def get_download_link(file_path, mime_type="text/plain"): |
|
"""Generate a download link for a file.""" |
|
with open(file_path, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{file_path}">Download {file_path}</a>' |
|
|
|
def save_tree_to_file(tree_text, parent_node, new_node): |
|
"""Save tree to a markdown file with name based on nodes.""" |
|
root_node = tree_text.strip().split('\n')[0].split('.')[1].strip() if tree_text.strip() else "Knowledge_Tree" |
|
filename = f"{sanitize_filename(root_node)}_{sanitize_filename(parent_node)}_{sanitize_filename(new_node)}_{int(time.time())}.md" |
|
|
|
mermaid_code = parse_outline_to_mermaid(tree_text, "🔮Google") |
|
export_md = f"# Knowledge Tree: {root_node}\n\n## Outline\n{tree_text}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```" |
|
|
|
with open(filename, "w") as f: |
|
f.write(export_md) |
|
return filename |
|
|
|
def load_trees_from_files(): |
|
"""Load all saved tree markdown files.""" |
|
tree_files = glob.glob("*.md") |
|
trees_dict = {} |
|
|
|
for file in tree_files: |
|
if file != "README.md" and file != "knowledge_tree.md": |
|
try: |
|
with open(file, 'r') as f: |
|
content = f.read() |
|
|
|
match = re.search(r'# Knowledge Tree: (.*)', content) |
|
if match: |
|
tree_name = match.group(1) |
|
else: |
|
tree_name = os.path.splitext(file)[0] |
|
|
|
|
|
outline_match = re.search(r'## Outline\n(.*?)(?=\n## |$)', content, re.DOTALL) |
|
if outline_match: |
|
tree_outline = outline_match.group(1).strip() |
|
trees_dict[f"{tree_name} ({file})"] = tree_outline |
|
except Exception as e: |
|
print(f"Error loading {file}: {e}") |
|
|
|
return trees_dict |
|
|
|
|
|
search_urls = { |
|
"📚📖ArXiv": lambda k: f"/?q={quote(k)}", |
|
"🔮Google": lambda k: f"https://www.google.com/search?q={quote(k)}", |
|
"📺Youtube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", |
|
"🔭Bing": lambda k: f"https://www.bing.com/search?q={quote(k)}", |
|
"💡Truth": lambda k: f"https://truthsocial.com/search?q={quote(k)}", |
|
"📱X": lambda k: f"https://twitter.com/search?q={quote(k)}", |
|
} |
|
|
|
|
|
st.title("🌳 AI Knowledge Tree Builder 🌱") |
|
|
|
|
|
st.sidebar.title("Saved Trees") |
|
saved_trees = load_trees_from_files() |
|
selected_saved_tree = st.sidebar.selectbox("Select a saved tree", ["None"] + list(saved_trees.keys())) |
|
|
|
|
|
project_type = st.selectbox("Select Project Type", ["Code Project", "Papers Project", "AI Project"]) |
|
|
|
|
|
if 'current_tree' not in st.session_state: |
|
if selected_saved_tree != "None" and selected_saved_tree in saved_trees: |
|
st.session_state['current_tree'] = saved_trees[selected_saved_tree] |
|
else: |
|
st.session_state['current_tree'] = trees.get("ML Engineering", project_seeds[project_type]) |
|
elif selected_saved_tree != "None" and selected_saved_tree in saved_trees: |
|
st.session_state['current_tree'] = saved_trees[selected_saved_tree] |
|
|
|
|
|
search_agent = st.selectbox("Select Search Agent for Node Links", list(search_urls.keys()), index=5) |
|
|
|
|
|
new_node = st.text_input("Add New Node") |
|
parent_node = st.text_input("Parent Node") |
|
if st.button("Grow Tree 🌱") and new_node and parent_node: |
|
st.session_state['current_tree'] = grow_tree(st.session_state['current_tree'], new_node, parent_node) |
|
|
|
|
|
saved_file = save_tree_to_file(st.session_state['current_tree'], parent_node, new_node) |
|
st.success(f"Added '{new_node}' under '{parent_node}' and saved to {saved_file}!") |
|
|
|
|
|
with open("current_tree.md", "w") as f: |
|
f.write(st.session_state['current_tree']) |
|
st.rerun() |
|
|
|
|
|
st.markdown("### Knowledge Tree Visualization") |
|
mermaid_code = parse_outline_to_mermaid(st.session_state['current_tree'], search_agent) |
|
components.html(generate_mermaid_html(mermaid_code), height=600) |
|
|
|
|
|
if st.button("Export Tree as Markdown"): |
|
export_md = f"# Knowledge Tree\n\n## Outline\n{st.session_state['current_tree']}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```" |
|
with open("knowledge_tree.md", "w") as f: |
|
f.write(export_md) |
|
st.markdown(get_download_link("knowledge_tree.md", "text/markdown"), unsafe_allow_html=True) |
|
|
|
|
|
if project_type == "AI Project": |
|
st.subheader("AI Model Building Options") |
|
model_option = st.radio("Choose Model Building Method", ["Minimal ML Model from CSV", "SFT Fine-Tuning"]) |
|
|
|
if model_option == "Minimal ML Model from CSV": |
|
st.write("### Build Minimal ML Model from CSV") |
|
uploaded_file = st.file_uploader("Upload CSV", type="csv") |
|
if uploaded_file: |
|
df = pd.read_csv(uploaded_file) |
|
st.write("Columns:", df.columns.tolist()) |
|
feature_cols = st.multiselect("Select feature columns", df.columns) |
|
target_col = st.selectbox("Select target column", df.columns) |
|
if st.button("Train Model"): |
|
X = df[feature_cols].values |
|
y = df[target_col].values |
|
X_tensor = torch.tensor(X, dtype=torch.float32) |
|
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1) |
|
dataset = TensorDataset(X_tensor, y_tensor) |
|
loader = DataLoader(dataset, batch_size=32, shuffle=True) |
|
model = nn.Linear(X.shape[1], 1) |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(model.parameters(), lr=0.01) |
|
for epoch in range(10): |
|
for batch_X, batch_y in loader: |
|
optimizer.zero_grad() |
|
outputs = model(batch_X) |
|
loss = criterion(outputs, batch_y) |
|
loss.backward() |
|
optimizer.step() |
|
torch.save(model.state_dict(), "model.pth") |
|
app_code = f""" |
|
import streamlit as st |
|
import torch |
|
import torch.nn as nn |
|
|
|
model = nn.Linear({len(feature_cols)}, 1) |
|
model.load_state_dict(torch.load("model.pth")) |
|
model.eval() |
|
|
|
st.title("ML Model Demo") |
|
inputs = [] |
|
for col in {feature_cols}: |
|
inputs.append(st.number_input(col)) |
|
if st.button("Predict"): |
|
input_tensor = torch.tensor([inputs], dtype=torch.float32) |
|
prediction = model(input_tensor).item() |
|
st.write(f"Predicted {target_col}: {{prediction}}") |
|
""" |
|
with open("app.py", "w") as f: |
|
f.write(app_code) |
|
reqs = "streamlit\ntorch\npandas\n" |
|
with open("requirements.txt", "w") as f: |
|
f.write(reqs) |
|
readme = """ |
|
# ML Model Demo |
|
|
|
## How to run |
|
1. Install requirements: `pip install -r requirements.txt` |
|
2. Run the app: `streamlit run app.py` |
|
3. Input feature values and click "Predict". |
|
""" |
|
with open("README.md", "w") as f: |
|
f.write(readme) |
|
st.markdown(get_download_link("model.pth", "application/octet-stream"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("app.py", "text/plain"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True) |
|
|
|
elif model_option == "SFT Fine-Tuning": |
|
st.write("### SFT Fine-Tuning with Small Models") |
|
|
|
|
|
with st.expander("Model Configuration", expanded=True): |
|
base_model = st.selectbox( |
|
"Select Base Model", |
|
["distilgpt2", "gpt2", "EleutherAI/pythia-70m"], |
|
help="Choose a small model for fine-tuning" |
|
) |
|
model_name = st.text_input("Model Name", f"sft-model-{int(time.time())}") |
|
domain = st.text_input("Target Domain", "general") |
|
|
|
|
|
if 'builder' not in st.session_state: |
|
st.session_state['builder'] = ModelBuilder() |
|
|
|
|
|
if st.button("Load Sample Model"): |
|
st.session_state['builder'].load_base_model(base_model) |
|
st.session_state['model_loaded'] = True |
|
st.rerun() |
|
|
|
|
|
if st.button("Generate Sample CSV"): |
|
sample_data = [ |
|
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."}, |
|
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."}, |
|
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."}, |
|
] |
|
with open("sft_data.csv", "w", newline="") as f: |
|
writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) |
|
writer.writeheader() |
|
writer.writerows(sample_data) |
|
st.markdown(get_download_link("sft_data.csv", "text/csv"), unsafe_allow_html=True) |
|
st.success("Sample CSV generated as 'sft_data.csv'!") |
|
|
|
|
|
uploaded_csv = st.file_uploader("Upload CSV for SFT (or use generated sample)", type="csv") |
|
if st.button("Fine-Tune Model") and (uploaded_csv or os.path.exists("sft_data.csv")): |
|
if not hasattr(st.session_state['builder'], 'model') or st.session_state['builder'].model is None: |
|
st.session_state['builder'].load_base_model(base_model) |
|
|
|
csv_path = "sft_data.csv" |
|
if uploaded_csv: |
|
with open(csv_path, "wb") as f: |
|
f.write(uploaded_csv.read()) |
|
|
|
with st.status("Fine-tuning model...", expanded=True) as status: |
|
st.session_state['builder'].fine_tune_sft(csv_path) |
|
st.session_state['builder'].save_model(st.session_state['builder'].config.model_path) |
|
status.update(label="Model fine-tuning completed!", state="complete") |
|
|
|
|
|
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) |
|
app_code = f""" |
|
import streamlit as st |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("{config.model_path}") |
|
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}") |
|
|
|
st.title("SFT Model Demo") |
|
input_text = st.text_area("Enter prompt") |
|
if st.button("Generate"): |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=50) |
|
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
""" |
|
with open("sft_app.py", "w") as f: |
|
f.write(app_code) |
|
reqs = "streamlit\ntorch\ntransformers\n" |
|
with open("sft_requirements.txt", "w") as f: |
|
f.write(reqs) |
|
readme = f""" |
|
# SFT Model Demo |
|
|
|
## How to run |
|
1. Install requirements: `pip install -r sft_requirements.txt` |
|
2. Run the app: `streamlit run sft_app.py` |
|
3. Input a prompt and click "Generate". |
|
""" |
|
with open("sft_README.md", "w") as f: |
|
f.write(readme) |
|
|
|
st.markdown(get_download_link("sft_app.py", "text/plain"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("sft_requirements.txt", "text/plain"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("sft_README.md", "text/markdown"), unsafe_allow_html=True) |
|
st.write(f"Model saved at: {config.model_path}") |
|
st.rerun() |
|
|
|
|
|
if 'model_loaded' in st.session_state and st.session_state['builder'].model is not None: |
|
st.write("### Test and Evaluate Fine-Tuned Model") |
|
if st.session_state['builder'].sft_data: |
|
st.write("Testing with SFT data:") |
|
for item in st.session_state['builder'].sft_data[:3]: |
|
prompt = item["prompt"] |
|
expected = item["response"] |
|
generated = st.session_state['builder'].evaluate(prompt) |
|
st.write(f"**Prompt**: {prompt}") |
|
st.write(f"**Expected**: {expected}") |
|
st.write(f"**Generated**: {generated}") |
|
st.write("---") |
|
|
|
test_prompt = st.text_area("Enter a custom prompt to test", "What is AI?") |
|
if st.button("Test Model"): |
|
result = st.session_state['builder'].evaluate(test_prompt) |
|
st.write(f"**Generated Response**: {result}") |