awacke1's picture
Update app.py
1a5fcce verified
raw
history blame
22 kB
#!/usr/bin/env python3
import os
import re
import streamlit as st
import streamlit.components.v1 as components
from urllib.parse import quote
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import base64
import glob
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
from dataclasses import dataclass
from typing import Optional
# Page Configuration
st.set_page_config(
page_title="AI Knowledge Tree Builder 📈🌿",
page_icon="🌳✨",
layout="wide",
initial_sidebar_state="auto",
)
# Predefined Knowledge Trees
trees = {
"ML Engineering": """
0. ML Engineering 🌐
1. Data Preparation
- Load Data 📊
- Preprocess Data 🛠️
2. Model Building
- Train Model 🤖
- Evaluate Model 📈
3. Deployment
- Deploy Model 🚀
""",
"Health": """
0. Health and Wellness 🌿
1. Physical Health
- Exercise 🏋️
- Nutrition 🍎
2. Mental Health
- Meditation 🧘
- Therapy 🛋️
""",
}
# Project Seeds
project_seeds = {
"Code Project": """
0. Code Project 📂
1. app.py 🐍
2. requirements.txt 📦
3. README.md 📄
""",
"Papers Project": """
0. Papers Project 📚
1. markdown 📝
2. mermaid 🖼️
3. huggingface.co 🤗
""",
"AI Project": """
0. AI Project 🤖
1. Streamlit Torch Transformers
- Streamlit 🌐
- Torch 🔥
- Transformers 🤖
2. SFT Fine-Tuning
- SFT 🤓
- Small Models 📉
""",
}
# Meta class for model configuration
class ModelMeta(type):
def __new__(cls, name, bases, attrs):
attrs['registry'] = {}
return super().__new__(cls, name, bases, attrs)
# Base Model Configuration Class
@dataclass
class ModelConfig(metaclass=ModelMeta):
name: str
base_model: str
size: str
domain: Optional[str] = None
def __init_subclass__(cls):
ModelConfig.registry[cls.__name__] = cls
@property
def model_path(self):
return f"models/{self.name}"
# Custom Dataset for SFT
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
input_text = f"{prompt} {response}"
encoding = self.tokenizer(
input_text,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
return {
"input_ids": encoding["input_ids"].squeeze(),
"attention_mask": encoding["attention_mask"].squeeze(),
"labels": encoding["input_ids"].squeeze() # For causal LM, labels are the same as input_ids
}
# Model Builder Class with SFT and Evaluation
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
def load_base_model(self, model_name: str):
"""Load base model from Hugging Face"""
with st.spinner("Loading base model..."):
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
st.success("Base model loaded!")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
"""Perform Supervised Fine-Tuning with CSV data"""
# Load CSV data
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
# Prepare dataset and dataloader
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Set up optimizer
optimizer = optim.AdamW(self.model.parameters(), lr=2e-5)
# Training loop
self.model.train()
for epoch in range(epochs):
with st.spinner(f"Training epoch {epoch + 1}/{epochs}..."):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(self.model.device)
attention_mask = batch["attention_mask"].to(self.model.device)
labels = batch["labels"].to(self.model.device)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success("SFT Fine-tuning completed!")
return self
def save_model(self, path: str):
"""Save the fine-tuned model"""
with st.spinner("Saving model..."):
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success("Model saved!")
def evaluate(self, prompt: str):
"""Evaluate the model with a prompt"""
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Utility Functions
def sanitize_label(label):
"""Remove invalid characters for Mermaid labels."""
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')
def sanitize_filename(label):
"""Make a valid filename from a label."""
return re.sub(r'[^\w\s-]', '', label).replace(' ', '_')
def parse_outline_to_mermaid(outline_text, search_agent):
"""Convert tree outline to Mermaid syntax with clickable nodes."""
lines = outline_text.strip().split('\n')
nodes, edges, clicks, stack = [], [], [], []
for line in lines:
indent = len(line) - len(line.lstrip())
level = indent // 4
label = re.sub(r'^[#*\->\d\.\s]+', '', line.strip())
if label:
node_id = f"N{len(nodes)}"
sanitized_label = sanitize_label(label)
nodes.append(f'{node_id}["{label}"]')
search_url = search_urls[search_agent](label)
clicks.append(f'click {node_id} "{search_url}" _blank')
if stack:
parent_level = stack[-1][0]
if level > parent_level:
edges.append(f"{stack[-1][1]} --> {node_id}")
stack.append((level, node_id))
else:
while stack and stack[-1][0] >= level:
stack.pop()
if stack:
edges.append(f"{stack[-1][1]} --> {node_id}")
stack.append((level, node_id))
else:
stack.append((level, node_id))
return "%%{init: {'themeVariables': {'fontSize': '18px'}}}%%\nflowchart LR\n" + "\n".join(nodes + edges + clicks)
def generate_mermaid_html(mermaid_code):
"""Generate HTML to display Mermaid diagram."""
return f"""
<html><head><script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>.centered-mermaid{{display:flex;justify-content:center;margin:20px auto;}}</style></head>
<body><div class="mermaid centered-mermaid">{mermaid_code}</div>
<script>mermaid.initialize({{startOnLoad:true}});</script></body></html>
"""
def grow_tree(base_tree, new_node_name, parent_node):
"""Add a new node to the tree under a specified parent."""
lines = base_tree.strip().split('\n')
new_lines = []
added = False
for line in lines:
new_lines.append(line)
if parent_node in line and not added:
indent = len(line) - len(line.lstrip())
new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} 🌱")
added = True
return "\n".join(new_lines)
def get_download_link(file_path, mime_type="text/plain"):
"""Generate a download link for a file."""
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{file_path}">Download {file_path}</a>'
def save_tree_to_file(tree_text, parent_node, new_node):
"""Save tree to a markdown file with name based on nodes."""
root_node = tree_text.strip().split('\n')[0].split('.')[1].strip() if tree_text.strip() else "Knowledge_Tree"
filename = f"{sanitize_filename(root_node)}_{sanitize_filename(parent_node)}_{sanitize_filename(new_node)}_{int(time.time())}.md"
mermaid_code = parse_outline_to_mermaid(tree_text, "🔮Google") # Default search engine for saved trees
export_md = f"# Knowledge Tree: {root_node}\n\n## Outline\n{tree_text}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
with open(filename, "w") as f:
f.write(export_md)
return filename
def load_trees_from_files():
"""Load all saved tree markdown files."""
tree_files = glob.glob("*.md")
trees_dict = {}
for file in tree_files:
if file != "README.md" and file != "knowledge_tree.md": # Skip project README and temp export
try:
with open(file, 'r') as f:
content = f.read()
# Extract the tree name from the first line
match = re.search(r'# Knowledge Tree: (.*)', content)
if match:
tree_name = match.group(1)
else:
tree_name = os.path.splitext(file)[0]
# Extract the outline section
outline_match = re.search(r'## Outline\n(.*?)(?=\n## |$)', content, re.DOTALL)
if outline_match:
tree_outline = outline_match.group(1).strip()
trees_dict[f"{tree_name} ({file})"] = tree_outline
except Exception as e:
print(f"Error loading {file}: {e}")
return trees_dict
# Search Agents (Highest resolution social network default: X)
search_urls = {
"📚📖ArXiv": lambda k: f"/?q={quote(k)}",
"🔮Google": lambda k: f"https://www.google.com/search?q={quote(k)}",
"📺Youtube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"🔭Bing": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"💡Truth": lambda k: f"https://truthsocial.com/search?q={quote(k)}",
"📱X": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
# Main App
st.title("🌳 AI Knowledge Tree Builder 🌱")
# Sidebar with saved trees
st.sidebar.title("Saved Trees")
saved_trees = load_trees_from_files()
selected_saved_tree = st.sidebar.selectbox("Select a saved tree", ["None"] + list(saved_trees.keys()))
# Select Project Type
project_type = st.selectbox("Select Project Type", ["Code Project", "Papers Project", "AI Project"])
# Initialize or load tree
if 'current_tree' not in st.session_state:
if selected_saved_tree != "None" and selected_saved_tree in saved_trees:
st.session_state['current_tree'] = saved_trees[selected_saved_tree]
else:
st.session_state['current_tree'] = trees.get("ML Engineering", project_seeds[project_type])
elif selected_saved_tree != "None" and selected_saved_tree in saved_trees:
st.session_state['current_tree'] = saved_trees[selected_saved_tree]
# Select Search Agent for Node Links
search_agent = st.selectbox("Select Search Agent for Node Links", list(search_urls.keys()), index=5) # Default to X
# Tree Growth
new_node = st.text_input("Add New Node")
parent_node = st.text_input("Parent Node")
if st.button("Grow Tree 🌱") and new_node and parent_node:
st.session_state['current_tree'] = grow_tree(st.session_state['current_tree'], new_node, parent_node)
# Save to a new file with the node names
saved_file = save_tree_to_file(st.session_state['current_tree'], parent_node, new_node)
st.success(f"Added '{new_node}' under '{parent_node}' and saved to {saved_file}!")
# Also update the temporary current_tree.md for compatibility
with open("current_tree.md", "w") as f:
f.write(st.session_state['current_tree'])
st.rerun()
# Display Mermaid Diagram
st.markdown("### Knowledge Tree Visualization")
mermaid_code = parse_outline_to_mermaid(st.session_state['current_tree'], search_agent)
components.html(generate_mermaid_html(mermaid_code), height=600)
# Export Tree
if st.button("Export Tree as Markdown"):
export_md = f"# Knowledge Tree\n\n## Outline\n{st.session_state['current_tree']}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```"
with open("knowledge_tree.md", "w") as f:
f.write(export_md)
st.markdown(get_download_link("knowledge_tree.md", "text/markdown"), unsafe_allow_html=True)
# AI Project: Model Building Options
if project_type == "AI Project":
st.subheader("AI Model Building Options")
model_option = st.radio("Choose Model Building Method", ["Minimal ML Model from CSV", "SFT Fine-Tuning"])
if model_option == "Minimal ML Model from CSV":
st.write("### Build Minimal ML Model from CSV")
uploaded_file = st.file_uploader("Upload CSV", type="csv")
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.write("Columns:", df.columns.tolist())
feature_cols = st.multiselect("Select feature columns", df.columns)
target_col = st.selectbox("Select target column", df.columns)
if st.button("Train Model"):
X = df[feature_cols].values
y = df[target_col].values
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
dataset = TensorDataset(X_tensor, y_tensor)
loader = DataLoader(dataset, batch_size=32, shuffle=True)
model = nn.Linear(X.shape[1], 1)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
for epoch in range(10):
for batch_X, batch_y in loader:
optimizer.zero_grad()
outputs = model(batch_X)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
torch.save(model.state_dict(), "model.pth")
app_code = f"""
import streamlit as st
import torch
import torch.nn as nn
model = nn.Linear({len(feature_cols)}, 1)
model.load_state_dict(torch.load("model.pth"))
model.eval()
st.title("ML Model Demo")
inputs = []
for col in {feature_cols}:
inputs.append(st.number_input(col))
if st.button("Predict"):
input_tensor = torch.tensor([inputs], dtype=torch.float32)
prediction = model(input_tensor).item()
st.write(f"Predicted {target_col}: {{prediction}}")
"""
with open("app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\npandas\n"
with open("requirements.txt", "w") as f:
f.write(reqs)
readme = """
# ML Model Demo
## How to run
1. Install requirements: `pip install -r requirements.txt`
2. Run the app: `streamlit run app.py`
3. Input feature values and click "Predict".
"""
with open("README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("model.pth", "application/octet-stream"), unsafe_allow_html=True)
st.markdown(get_download_link("app.py", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True)
elif model_option == "SFT Fine-Tuning":
st.write("### SFT Fine-Tuning with Small Models")
# Model Configuration
with st.expander("Model Configuration", expanded=True):
base_model = st.selectbox(
"Select Base Model",
["distilgpt2", "gpt2", "EleutherAI/pythia-70m"],
help="Choose a small model for fine-tuning"
)
model_name = st.text_input("Model Name", f"sft-model-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
# Initialize ModelBuilder
if 'builder' not in st.session_state:
st.session_state['builder'] = ModelBuilder()
# Load Sample Model
if st.button("Load Sample Model"):
st.session_state['builder'].load_base_model(base_model)
st.session_state['model_loaded'] = True
st.rerun()
# Generate and Export Sample CSV
if st.button("Generate Sample CSV"):
sample_data = [
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
]
with open("sft_data.csv", "w", newline="") as f:
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
writer.writeheader()
writer.writerows(sample_data)
st.markdown(get_download_link("sft_data.csv", "text/csv"), unsafe_allow_html=True)
st.success("Sample CSV generated as 'sft_data.csv'!")
# Upload CSV and Fine-Tune
uploaded_csv = st.file_uploader("Upload CSV for SFT (or use generated sample)", type="csv")
if st.button("Fine-Tune Model") and (uploaded_csv or os.path.exists("sft_data.csv")):
if not hasattr(st.session_state['builder'], 'model') or st.session_state['builder'].model is None:
st.session_state['builder'].load_base_model(base_model)
csv_path = "sft_data.csv"
if uploaded_csv:
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
with st.status("Fine-tuning model...", expanded=True) as status:
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(st.session_state['builder'].config.model_path)
status.update(label="Model fine-tuning completed!", state="complete")
# Generate deployment files
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
st.title("SFT Model Demo")
input_text = st.text_area("Enter prompt")
if st.button("Generate"):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
with open("sft_app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\ntransformers\n"
with open("sft_requirements.txt", "w") as f:
f.write(reqs)
readme = f"""
# SFT Model Demo
## How to run
1. Install requirements: `pip install -r sft_requirements.txt`
2. Run the app: `streamlit run sft_app.py`
3. Input a prompt and click "Generate".
"""
with open("sft_README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("sft_app.py", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_requirements.txt", "text/plain"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_README.md", "text/markdown"), unsafe_allow_html=True)
st.write(f"Model saved at: {config.model_path}")
st.rerun()
# Test and Evaluate Model
if 'model_loaded' in st.session_state and st.session_state['builder'].model is not None:
st.write("### Test and Evaluate Fine-Tuned Model")
if st.session_state['builder'].sft_data:
st.write("Testing with SFT data:")
for item in st.session_state['builder'].sft_data[:3]: # Show up to 3 examples
prompt = item["prompt"]
expected = item["response"]
generated = st.session_state['builder'].evaluate(prompt)
st.write(f"**Prompt**: {prompt}")
st.write(f"**Expected**: {expected}")
st.write(f"**Generated**: {generated}")
st.write("---")
test_prompt = st.text_area("Enter a custom prompt to test", "What is AI?")
if st.button("Test Model"):
result = st.session_state['builder'].evaluate(test_prompt)
st.write(f"**Generated Response**: {result}")