awacke1's picture
Create app.py
1c0bc31 verified
raw
history blame
7.24 kB
import streamlit as st
from transformers import pipeline
import os
import glob
import re
import pytz
from datetime import datetime
import base64
# πŸŒ³πŸ€– AI Knowledge Tree Builder - Growing smarter with every click!
st.set_page_config(
page_title="AI Knowledge Tree Builder πŸ“ˆπŸŒΏ",
page_icon="🌳✨",
layout="wide",
initial_sidebar_state="auto",
)
# Predefined Knowledge Trees
BiologyAndLevel36MagicUsers = """
0. Biology Core Rules and Future Exceptions
1. Central Dogma DNA RNA Protein
- Current CRISPR RNA editing πŸ§ͺ
- Research Gene therapy siRNA πŸ”¬
- Future Programmable genetics πŸš€
2. Cell Origin
- Current iPSCs organoids 🦠
- Research Synthetic cells πŸ”¬
- Future De novo cell creation πŸš€
"""
AITopicsToInnovate1 = """
1. Major AI Industry Players 🌐
1. Research Leaders 🎯
- OpenAI: GPT-4 DALL-E Foundation Models πŸ”΅
- Google: PaLM Gemini LLMs 🟦
- Anthropic: Claude Constitutional AI ⚑
"""
MultiplayerGames = """
0. Fantasy Domain Introduction
1. Setting the Scene
- Current Create a high-fantasy realm 🏞️
- Research Add domain-specific entities πŸ§β€β™‚οΈ
- Future AI-generated worldbuilding πŸš€
"""
# Root Node with URLs
RootNode = """
0. Research Hub 🌐
1. Awacke1 Profile
- Link: [Hugging Face Profile](https://huggingface.co/awacke1) πŸ“š
2. TeachingCV App
- Link: [TeachingCV](https://huggingface.co/spaces/awacke1/TeachingCV) πŸ–₯️
3. DeepResearchEvaluator App
- Link: [DeepResearchEvaluator](https://huggingface.co/spaces/awacke1/DeepResearchEvaluator) πŸ”
"""
# Utility Functions
def sanitize_filename(text):
safe_text = re.sub(r'[^\w\s-]', ' ', text)
safe_text = re.sub(r'\s+', ' ', safe_text)
return safe_text.strip()[:50]
def generate_timestamp_filename(query):
central = pytz.timezone('US/Central')
current_time = datetime.now(central)
time_str = current_time.strftime("%I%M%p")
date_str = current_time.strftime("%m%d%Y")
safe_query = sanitize_filename(query)
return f"{time_str} {date_str} ({safe_query}).md"
def parse_outline_to_mermaid(outline_text):
lines = outline_text.strip().split('\n')
nodes = []
edges = []
stack = []
for line in lines:
indent = len(line) - len(line.lstrip())
level = indent // 4 # 4 spaces per level
text = line.strip()
label = re.sub(r'^[#*\->\d\.\s]+', '', text).strip()
if label:
node_id = f"N{len(nodes)}"
nodes.append(f'{node_id}["{label}"]')
if stack:
parent_level = stack[-1][0]
if level > parent_level:
parent_id = stack[-1][1]
edges.append(f"{parent_id} --> {node_id}")
stack.append((level, node_id))
else:
while stack and stack[-1][0] >= level:
stack.pop()
if stack:
parent_id = stack[-1][1]
edges.append(f"{parent_id} --> {node_id}")
stack.append((level, node_id))
else:
stack.append((level, node_id))
return "graph TD\n" + "\n".join(nodes + edges)
def grow_tree(base_tree, new_node_name, parent_node):
lines = base_tree.strip().split('\n')
new_lines = []
added = False
for line in lines:
new_lines.append(line)
if parent_node in line and not added:
indent = len(line) - len(line.lstrip())
new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} 🌱")
added = True
return "\n".join(new_lines)
def breed_trees(tree1, tree2, intersect_node):
lines1 = tree1.strip().split('\n')
lines2 = tree2.strip().split('\n')
new_lines = lines1.copy()
for line in lines2:
if intersect_node not in line and not any(line.strip() in l for l in lines1):
new_lines.append(line)
return "\n".join(new_lines)
# Model Building Process
def generate_model_pipeline():
return """
graph TD
A[Load Data πŸ“Š] --> B[Preprocess Data πŸ› οΈ]
B --> C[Train Model πŸ€–]
C --> D[Evaluate Model πŸ“ˆ]
D --> E[Deploy Model πŸš€]
"""
# AI Lookup
@st.cache_resource
def load_generator():
return pipeline("text-generation", model="distilgpt2")
# Sidebar: File Management
if 'selected_file' not in st.session_state:
st.session_state.selected_file = None
st.sidebar.title("πŸ“ Saved Interactions")
md_files = glob.glob("*.md")
for file in md_files:
if st.sidebar.button(file):
st.session_state.selected_file = file
if st.sidebar.button("Create New Note"):
filename = generate_timestamp_filename("New Note")
with open(filename, 'w') as f:
f.write("# New Note\n")
st.sidebar.success(f"Created {filename}")
st.session_state.selected_file = filename
# Main App
st.title("🌳 AI Knowledge Tree Builder 🌱")
st.markdown("Grow and visualize knowledge trees, build ML pipelines, and explore research!")
if st.session_state.selected_file:
with open(st.session_state.selected_file, 'r') as f:
content = f.read()
st.markdown(content)
else:
# Knowledge Tree Selection and Growth
trees = {
"Research Hub": RootNode,
"Biology": BiologyAndLevel36MagicUsers,
"AI Topics": AITopicsToInnovate1,
"Multiplayer Games": MultiplayerGames
}
selected_tree = st.selectbox("Select Knowledge Tree", list(trees.keys()))
current_tree = trees[selected_tree]
# Tree Growth
new_node = st.text_input("Add New Node (e.g., 'ML Pipeline')")
parent_node = st.text_input("Parent Node to Attach To (e.g., 'Research Leaders')")
if st.button("Grow Tree 🌱") and new_node and parent_node:
current_tree = grow_tree(current_tree, new_node, parent_node)
trees[selected_tree] = current_tree
st.success(f"Added '{new_node}' under '{parent_node}'!")
# Tree Breeding
breed_with = st.selectbox("Breed With Another Tree", [t for t in trees.keys() if t != selected_tree])
intersect_node = st.text_input("Common Node for Breeding (e.g., 'Research')")
if st.button("Breed Trees 🌳"):
new_tree = breed_trees(current_tree, trees[breed_with], intersect_node)
trees[f"{selected_tree} + {breed_with}"] = new_tree
st.success(f"Created new tree: {selected_tree} + {breed_with}")
# Display Tree
mermaid_code = parse_outline_to_mermaid(current_tree)
st.markdown("### Knowledge Tree Visualization")
st.mermaid(mermaid_code)
# Model Building Pipeline
st.markdown("### ML Model Building Pipeline")
st.mermaid(generate_model_pipeline())
# AI Lookup
query = st.text_input("Enter Query for AI Lookup")
if st.button("Perform AI Lookup πŸ€–") and query:
generator = load_generator()
response = generator(query, max_length=50)[0]['generated_text']
st.write(f"**AI Response:** {response}")
filename = generate_timestamp_filename(query)
with open(filename, 'w') as f:
f.write(f"# Query: {query}\n\n## AI Response\n{response}")
st.success(f"Saved to {filename}")
if __name__ == "__main__":
st.sidebar.markdown("Explore, grow, and innovate!")