Update app.py
Browse files
app.py
CHANGED
@@ -13,17 +13,10 @@ import base64
|
|
13 |
import glob
|
14 |
import time
|
15 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
16 |
-
from
|
17 |
-
|
18 |
-
from spectrum import SpectrumAnalyzer
|
19 |
-
import yaml
|
20 |
from dataclasses import dataclass
|
21 |
-
from typing import Optional
|
22 |
-
import logging
|
23 |
-
|
24 |
-
# Configure logging
|
25 |
-
logging.basicConfig(level=logging.INFO)
|
26 |
-
logger = logging.getLogger(__name__)
|
27 |
|
28 |
# Page Configuration
|
29 |
st.set_page_config(
|
@@ -77,13 +70,9 @@ project_seeds = {
|
|
77 |
- Streamlit π
|
78 |
- Torch π₯
|
79 |
- Transformers π€
|
80 |
-
2.
|
81 |
-
-
|
82 |
-
-
|
83 |
-
3. Transformers Diffusers Datasets
|
84 |
-
- Transformers π€
|
85 |
-
- Diffusers π¨
|
86 |
-
- Datasets π
|
87 |
""",
|
88 |
}
|
89 |
|
@@ -108,54 +97,96 @@ class ModelConfig(metaclass=ModelMeta):
|
|
108 |
def model_path(self):
|
109 |
return f"models/{self.name}"
|
110 |
|
111 |
-
#
|
112 |
-
|
113 |
-
def
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
# Model Builder Class
|
121 |
class ModelBuilder:
|
122 |
def __init__(self):
|
123 |
self.config = None
|
124 |
self.model = None
|
125 |
self.tokenizer = None
|
126 |
|
127 |
-
@pipeline_stage
|
128 |
def load_base_model(self, model_name: str):
|
129 |
"""Load base model from Hugging Face"""
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
return self
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
return self
|
154 |
|
155 |
def save_model(self, path: str):
|
156 |
-
"""Save the
|
157 |
-
|
158 |
-
|
|
|
|
|
159 |
|
160 |
# Utility Functions
|
161 |
def sanitize_label(label):
|
@@ -325,7 +356,7 @@ if st.button("Export Tree as Markdown"):
|
|
325 |
# AI Project: Model Building Options
|
326 |
if project_type == "AI Project":
|
327 |
st.subheader("AI Model Building Options")
|
328 |
-
model_option = st.radio("Choose Model Building Method", ["Minimal ML Model from CSV", "
|
329 |
|
330 |
if model_option == "Minimal ML Model from CSV":
|
331 |
st.write("### Build Minimal ML Model from CSV")
|
@@ -391,46 +422,55 @@ if st.button("Predict"):
|
|
391 |
st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True)
|
392 |
st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True)
|
393 |
|
394 |
-
elif model_option == "
|
395 |
-
st.write("###
|
396 |
|
397 |
# Model Configuration
|
398 |
with st.expander("Model Configuration", expanded=True):
|
399 |
base_model = st.selectbox(
|
400 |
"Select Base Model",
|
401 |
-
["
|
|
|
402 |
)
|
403 |
-
model_name = st.text_input("Model Name", "
|
404 |
domain = st.text_input("Target Domain", "general")
|
405 |
-
use_merging = st.checkbox("Apply Model Merging", False)
|
406 |
-
use_spectrum = st.checkbox("Apply Spectrum Specialization", True)
|
407 |
|
408 |
-
#
|
409 |
-
if st.button("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
config = ModelConfig(
|
411 |
name=model_name,
|
412 |
base_model=base_model,
|
413 |
-
size="
|
414 |
domain=domain
|
415 |
)
|
416 |
builder = ModelBuilder()
|
417 |
|
418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
builder.load_base_model(config.base_model)
|
420 |
-
|
421 |
-
if use_merging:
|
422 |
-
models_to_merge = st.multiselect(
|
423 |
-
"Select Models to Merge",
|
424 |
-
["mistral-7b", "llama-2-7b", "gpt2-medium"]
|
425 |
-
)
|
426 |
-
builder.apply_merge(models_to_merge, f"merged_{config.name}")
|
427 |
-
|
428 |
-
if use_spectrum:
|
429 |
-
domain_data = st.text_area("Enter domain-specific data", "Sample domain data")
|
430 |
-
builder.apply_spectrum(domain_data)
|
431 |
-
|
432 |
builder.save_model(config.model_path)
|
433 |
-
status.update(label="
|
434 |
|
435 |
# Generate deployment files
|
436 |
app_code = f"""
|
@@ -440,32 +480,32 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
440 |
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
|
441 |
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
|
442 |
|
443 |
-
st.title("
|
444 |
-
input_text = st.text_area("Enter
|
445 |
if st.button("Generate"):
|
446 |
inputs = tokenizer(input_text, return_tensors="pt")
|
447 |
-
outputs = model.generate(**inputs)
|
448 |
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
449 |
"""
|
450 |
-
with open("
|
451 |
f.write(app_code)
|
452 |
-
reqs = "streamlit\ntorch\ntransformers\
|
453 |
-
with open("
|
454 |
f.write(reqs)
|
455 |
readme = f"""
|
456 |
-
#
|
457 |
|
458 |
## How to run
|
459 |
-
1. Install requirements: `pip install -r
|
460 |
-
2. Run the app: `streamlit run
|
461 |
-
3. Input
|
462 |
"""
|
463 |
-
with open("
|
464 |
f.write(readme)
|
465 |
|
466 |
-
st.markdown(get_download_link("
|
467 |
-
st.markdown(get_download_link("
|
468 |
-
st.markdown(get_download_link("
|
469 |
st.write(f"Model saved at: {config.model_path}")
|
470 |
|
471 |
if __name__ == "__main__":
|
|
|
13 |
import glob
|
14 |
import time
|
15 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
16 |
+
from torch.utils.data import Dataset, DataLoader
|
17 |
+
import csv
|
|
|
|
|
18 |
from dataclasses import dataclass
|
19 |
+
from typing import Optional
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Page Configuration
|
22 |
st.set_page_config(
|
|
|
70 |
- Streamlit π
|
71 |
- Torch π₯
|
72 |
- Transformers π€
|
73 |
+
2. SFT Fine-Tuning
|
74 |
+
- SFT π€
|
75 |
+
- Small Models π
|
|
|
|
|
|
|
|
|
76 |
""",
|
77 |
}
|
78 |
|
|
|
97 |
def model_path(self):
|
98 |
return f"models/{self.name}"
|
99 |
|
100 |
+
# Custom Dataset for SFT
|
101 |
+
class SFTDataset(Dataset):
|
102 |
+
def __init__(self, data, tokenizer, max_length=128):
|
103 |
+
self.data = data
|
104 |
+
self.tokenizer = tokenizer
|
105 |
+
self.max_length = max_length
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
return len(self.data)
|
109 |
+
|
110 |
+
def __getitem__(self, idx):
|
111 |
+
prompt = self.data[idx]["prompt"]
|
112 |
+
response = self.data[idx]["response"]
|
113 |
+
input_text = f"{prompt} {response}"
|
114 |
+
encoding = self.tokenizer(
|
115 |
+
input_text,
|
116 |
+
max_length=self.max_length,
|
117 |
+
padding="max_length",
|
118 |
+
truncation=True,
|
119 |
+
return_tensors="pt"
|
120 |
+
)
|
121 |
+
return {
|
122 |
+
"input_ids": encoding["input_ids"].squeeze(),
|
123 |
+
"attention_mask": encoding["attention_mask"].squeeze(),
|
124 |
+
"labels": encoding["input_ids"].squeeze() # For causal LM, labels are the same as input_ids
|
125 |
+
}
|
126 |
|
127 |
+
# Model Builder Class with SFT
|
128 |
class ModelBuilder:
|
129 |
def __init__(self):
|
130 |
self.config = None
|
131 |
self.model = None
|
132 |
self.tokenizer = None
|
133 |
|
|
|
134 |
def load_base_model(self, model_name: str):
|
135 |
"""Load base model from Hugging Face"""
|
136 |
+
with st.spinner("Loading base model..."):
|
137 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
138 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
139 |
+
if self.tokenizer.pad_token is None:
|
140 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
141 |
+
st.success("Base model loaded!")
|
142 |
return self
|
143 |
|
144 |
+
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
145 |
+
"""Perform Supervised Fine-Tuning with CSV data"""
|
146 |
+
# Load CSV data
|
147 |
+
data = []
|
148 |
+
with open(csv_path, "r") as f:
|
149 |
+
reader = csv.DictReader(f)
|
150 |
+
for row in reader:
|
151 |
+
data.append({"prompt": row["prompt"], "response": row["response"]})
|
152 |
+
|
153 |
+
# Prepare dataset and dataloader
|
154 |
+
dataset = SFTDataset(data, self.tokenizer)
|
155 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
156 |
+
|
157 |
+
# Set up optimizer
|
158 |
+
optimizer = optim.AdamW(self.model.parameters(), lr=2e-5)
|
159 |
+
|
160 |
+
# Training loop
|
161 |
+
self.model.train()
|
162 |
+
for epoch in range(epochs):
|
163 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}..."):
|
164 |
+
total_loss = 0
|
165 |
+
for batch in dataloader:
|
166 |
+
optimizer.zero_grad()
|
167 |
+
input_ids = batch["input_ids"].to(self.model.device)
|
168 |
+
attention_mask = batch["attention_mask"].to(self.model.device)
|
169 |
+
labels = batch["labels"].to(self.model.device)
|
170 |
+
|
171 |
+
outputs = self.model(
|
172 |
+
input_ids=input_ids,
|
173 |
+
attention_mask=attention_mask,
|
174 |
+
labels=labels
|
175 |
+
)
|
176 |
+
loss = outputs.loss
|
177 |
+
loss.backward()
|
178 |
+
optimizer.step()
|
179 |
+
total_loss += loss.item()
|
180 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
181 |
+
st.success("SFT Fine-tuning completed!")
|
182 |
return self
|
183 |
|
184 |
def save_model(self, path: str):
|
185 |
+
"""Save the fine-tuned model"""
|
186 |
+
with st.spinner("Saving model..."):
|
187 |
+
self.model.save_pretrained(path)
|
188 |
+
self.tokenizer.save_pretrained(path)
|
189 |
+
st.success("Model saved!")
|
190 |
|
191 |
# Utility Functions
|
192 |
def sanitize_label(label):
|
|
|
356 |
# AI Project: Model Building Options
|
357 |
if project_type == "AI Project":
|
358 |
st.subheader("AI Model Building Options")
|
359 |
+
model_option = st.radio("Choose Model Building Method", ["Minimal ML Model from CSV", "SFT Fine-Tuning"])
|
360 |
|
361 |
if model_option == "Minimal ML Model from CSV":
|
362 |
st.write("### Build Minimal ML Model from CSV")
|
|
|
422 |
st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True)
|
423 |
st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True)
|
424 |
|
425 |
+
elif model_option == "SFT Fine-Tuning":
|
426 |
+
st.write("### SFT Fine-Tuning with Small Models")
|
427 |
|
428 |
# Model Configuration
|
429 |
with st.expander("Model Configuration", expanded=True):
|
430 |
base_model = st.selectbox(
|
431 |
"Select Base Model",
|
432 |
+
["distilgpt2", "gpt2", "EleutherAI/pythia-70m"], # Small models suitable for SFT
|
433 |
+
help="Choose a small model for fine-tuning"
|
434 |
)
|
435 |
+
model_name = st.text_input("Model Name", "sft-model")
|
436 |
domain = st.text_input("Target Domain", "general")
|
|
|
|
|
437 |
|
438 |
+
# Generate Sample CSV
|
439 |
+
if st.button("Generate Sample CSV"):
|
440 |
+
sample_data = [
|
441 |
+
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
|
442 |
+
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
|
443 |
+
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
|
444 |
+
]
|
445 |
+
with open("sft_data.csv", "w", newline="") as f:
|
446 |
+
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
|
447 |
+
writer.writeheader()
|
448 |
+
writer.writerows(sample_data)
|
449 |
+
st.markdown(get_download_link("sft_data.csv", "text/csv"), unsafe_allow_html=True)
|
450 |
+
st.success("Sample CSV generated as 'sft_data.csv'!")
|
451 |
+
|
452 |
+
# Fine-Tune with SFT
|
453 |
+
uploaded_csv = st.file_uploader("Upload CSV for SFT (or use generated sample)", type="csv")
|
454 |
+
if st.button("Fine-Tune Model") and (uploaded_csv or os.path.exists("sft_data.csv")):
|
455 |
config = ModelConfig(
|
456 |
name=model_name,
|
457 |
base_model=base_model,
|
458 |
+
size="small",
|
459 |
domain=domain
|
460 |
)
|
461 |
builder = ModelBuilder()
|
462 |
|
463 |
+
# Load CSV
|
464 |
+
csv_path = "sft_data.csv"
|
465 |
+
if uploaded_csv:
|
466 |
+
with open(csv_path, "wb") as f:
|
467 |
+
f.write(uploaded_csv.read())
|
468 |
+
|
469 |
+
with st.status("Fine-tuning model...", expanded=True) as status:
|
470 |
builder.load_base_model(config.base_model)
|
471 |
+
builder.fine_tune_sft(csv_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
builder.save_model(config.model_path)
|
473 |
+
status.update(label="Model fine-tuning completed!", state="complete")
|
474 |
|
475 |
# Generate deployment files
|
476 |
app_code = f"""
|
|
|
480 |
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
|
481 |
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
|
482 |
|
483 |
+
st.title("SFT Model Demo")
|
484 |
+
input_text = st.text_area("Enter prompt")
|
485 |
if st.button("Generate"):
|
486 |
inputs = tokenizer(input_text, return_tensors="pt")
|
487 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
488 |
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
489 |
"""
|
490 |
+
with open("sft_app.py", "w") as f:
|
491 |
f.write(app_code)
|
492 |
+
reqs = "streamlit\ntorch\ntransformers\n"
|
493 |
+
with open("sft_requirements.txt", "w") as f:
|
494 |
f.write(reqs)
|
495 |
readme = f"""
|
496 |
+
# SFT Model Demo
|
497 |
|
498 |
## How to run
|
499 |
+
1. Install requirements: `pip install -r sft_requirements.txt`
|
500 |
+
2. Run the app: `streamlit run sft_app.py`
|
501 |
+
3. Input a prompt and click "Generate".
|
502 |
"""
|
503 |
+
with open("sft_README.md", "w") as f:
|
504 |
f.write(readme)
|
505 |
|
506 |
+
st.markdown(get_download_link("sft_app.py", "text/plain"), unsafe_allow_html=True)
|
507 |
+
st.markdown(get_download_link("sft_requirements.txt", "text/plain"), unsafe_allow_html=True)
|
508 |
+
st.markdown(get_download_link("sft_README.md", "text/markdown"), unsafe_allow_html=True)
|
509 |
st.write(f"Model saved at: {config.model_path}")
|
510 |
|
511 |
if __name__ == "__main__":
|