#!/usr/bin/env python3 import os import re import streamlit as st import streamlit.components.v1 as components from urllib.parse import quote import pandas as pd import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset import base64 import glob import time from transformers import AutoModelForCausalLM, AutoTokenizer from torch.utils.data import Dataset, DataLoader import csv from dataclasses import dataclass from typing import Optional # Page Configuration st.set_page_config( page_title="AI Knowledge Tree Builder ๐Ÿ“ˆ๐ŸŒฟ", page_icon="๐ŸŒณโœจ", layout="wide", initial_sidebar_state="auto", ) # Predefined Knowledge Trees trees = { "ML Engineering": """ 0. ML Engineering ๐ŸŒ 1. Data Preparation - Load Data ๐Ÿ“Š - Preprocess Data ๐Ÿ› ๏ธ 2. Model Building - Train Model ๐Ÿค– - Evaluate Model ๐Ÿ“ˆ 3. Deployment - Deploy Model ๐Ÿš€ """, "Health": """ 0. Health and Wellness ๐ŸŒฟ 1. Physical Health - Exercise ๐Ÿ‹๏ธ - Nutrition ๐ŸŽ 2. Mental Health - Meditation ๐Ÿง˜ - Therapy ๐Ÿ›‹๏ธ """, } # Project Seeds project_seeds = { "Code Project": """ 0. Code Project ๐Ÿ“‚ 1. app.py ๐Ÿ 2. requirements.txt ๐Ÿ“ฆ 3. README.md ๐Ÿ“„ """, "Papers Project": """ 0. Papers Project ๐Ÿ“š 1. markdown ๐Ÿ“ 2. mermaid ๐Ÿ–ผ๏ธ 3. huggingface.co ๐Ÿค— """, "AI Project": """ 0. AI Project ๐Ÿค– 1. Streamlit Torch Transformers - Streamlit ๐ŸŒ - Torch ๐Ÿ”ฅ - Transformers ๐Ÿค– 2. SFT Fine-Tuning - SFT ๐Ÿค“ - Small Models ๐Ÿ“‰ """, } # Meta class for model configuration class ModelMeta(type): def __new__(cls, name, bases, attrs): attrs['registry'] = {} return super().__new__(cls, name, bases, attrs) # Base Model Configuration Class @dataclass class ModelConfig(metaclass=ModelMeta): name: str base_model: str size: str domain: Optional[str] = None def __init_subclass__(cls): ModelConfig.registry[cls.__name__] = cls @property def model_path(self): return f"models/{self.name}" # Custom Dataset for SFT class SFTDataset(Dataset): def __init__(self, data, tokenizer, max_length=128): self.data = data self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.data) def __getitem__(self, idx): prompt = self.data[idx]["prompt"] response = self.data[idx]["response"] input_text = f"{prompt} {response}" encoding = self.tokenizer( input_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt" ) return { "input_ids": encoding["input_ids"].squeeze(), "attention_mask": encoding["attention_mask"].squeeze(), "labels": encoding["input_ids"].squeeze() # For causal LM, labels are the same as input_ids } # Model Builder Class with SFT class ModelBuilder: def __init__(self): self.config = None self.model = None self.tokenizer = None def load_base_model(self, model_name: str): """Load base model from Hugging Face""" with st.spinner("Loading base model..."): self.model = AutoModelForCausalLM.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token st.success("Base model loaded!") return self def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): """Perform Supervised Fine-Tuning with CSV data""" # Load CSV data data = [] with open(csv_path, "r") as f: reader = csv.DictReader(f) for row in reader: data.append({"prompt": row["prompt"], "response": row["response"]}) # Prepare dataset and dataloader dataset = SFTDataset(data, self.tokenizer) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # Set up optimizer optimizer = optim.AdamW(self.model.parameters(), lr=2e-5) # Training loop self.model.train() for epoch in range(epochs): with st.spinner(f"Training epoch {epoch + 1}/{epochs}..."): total_loss = 0 for batch in dataloader: optimizer.zero_grad() input_ids = batch["input_ids"].to(self.model.device) attention_mask = batch["attention_mask"].to(self.model.device) labels = batch["labels"].to(self.model.device) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, labels=labels ) loss = outputs.loss loss.backward() optimizer.step() total_loss += loss.item() st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") st.success("SFT Fine-tuning completed!") return self def save_model(self, path: str): """Save the fine-tuned model""" with st.spinner("Saving model..."): self.model.save_pretrained(path) self.tokenizer.save_pretrained(path) st.success("Model saved!") # Utility Functions def sanitize_label(label): """Remove invalid characters for Mermaid labels.""" return re.sub(r'[^\w\s-]', '', label).replace(' ', '_') def sanitize_filename(label): """Make a valid filename from a label.""" return re.sub(r'[^\w\s-]', '', label).replace(' ', '_') def parse_outline_to_mermaid(outline_text, search_agent): """Convert tree outline to Mermaid syntax with clickable nodes.""" lines = outline_text.strip().split('\n') nodes, edges, clicks, stack = [], [], [], [] for line in lines: indent = len(line) - len(line.lstrip()) level = indent // 4 label = re.sub(r'^[#*\->\d\.\s]+', '', line.strip()) if label: node_id = f"N{len(nodes)}" sanitized_label = sanitize_label(label) nodes.append(f'{node_id}["{label}"]') search_url = search_urls[search_agent](label) clicks.append(f'click {node_id} "{search_url}" _blank') if stack: parent_level = stack[-1][0] if level > parent_level: edges.append(f"{stack[-1][1]} --> {node_id}") stack.append((level, node_id)) else: while stack and stack[-1][0] >= level: stack.pop() if stack: edges.append(f"{stack[-1][1]} --> {node_id}") stack.append((level, node_id)) else: stack.append((level, node_id)) return "%%{init: {'themeVariables': {'fontSize': '18px'}}}%%\nflowchart LR\n" + "\n".join(nodes + edges + clicks) def generate_mermaid_html(mermaid_code): """Generate HTML to display Mermaid diagram.""" return f"""
{mermaid_code}
""" def grow_tree(base_tree, new_node_name, parent_node): """Add a new node to the tree under a specified parent.""" lines = base_tree.strip().split('\n') new_lines = [] added = False for line in lines: new_lines.append(line) if parent_node in line and not added: indent = len(line) - len(line.lstrip()) new_lines.append(f"{' ' * (indent + 4)}- {new_node_name} ๐ŸŒฑ") added = True return "\n".join(new_lines) def get_download_link(file_path, mime_type="text/plain"): """Generate a download link for a file.""" with open(file_path, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() return f'Download {file_path}' def save_tree_to_file(tree_text, parent_node, new_node): """Save tree to a markdown file with name based on nodes.""" root_node = tree_text.strip().split('\n')[0].split('.')[1].strip() if tree_text.strip() else "Knowledge_Tree" filename = f"{sanitize_filename(root_node)}_{sanitize_filename(parent_node)}_{sanitize_filename(new_node)}_{int(time.time())}.md" mermaid_code = parse_outline_to_mermaid(tree_text, "๐Ÿ”ฎGoogle") # Default search engine for saved trees export_md = f"# Knowledge Tree: {root_node}\n\n## Outline\n{tree_text}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```" with open(filename, "w") as f: f.write(export_md) return filename def load_trees_from_files(): """Load all saved tree markdown files.""" tree_files = glob.glob("*.md") trees_dict = {} for file in tree_files: if file != "README.md" and file != "knowledge_tree.md": # Skip project README and temp export try: with open(file, 'r') as f: content = f.read() # Extract the tree name from the first line match = re.search(r'# Knowledge Tree: (.*)', content) if match: tree_name = match.group(1) else: tree_name = os.path.splitext(file)[0] # Extract the outline section outline_match = re.search(r'## Outline\n(.*?)(?=\n## |$)', content, re.DOTALL) if outline_match: tree_outline = outline_match.group(1).strip() trees_dict[f"{tree_name} ({file})"] = tree_outline except Exception as e: print(f"Error loading {file}: {e}") return trees_dict # Search Agents (Highest resolution social network default: X) search_urls = { "๐Ÿ“š๐Ÿ“–ArXiv": lambda k: f"/?q={quote(k)}", "๐Ÿ”ฎGoogle": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐Ÿ“บYoutube": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿ”ญBing": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐Ÿ’กTruth": lambda k: f"https://truthsocial.com/search?q={quote(k)}", "๐Ÿ“ฑX": lambda k: f"https://twitter.com/search?q={quote(k)}", } # Main App st.title("๐ŸŒณ AI Knowledge Tree Builder ๐ŸŒฑ") # Sidebar with saved trees st.sidebar.title("Saved Trees") saved_trees = load_trees_from_files() selected_saved_tree = st.sidebar.selectbox("Select a saved tree", ["None"] + list(saved_trees.keys())) # Select Project Type project_type = st.selectbox("Select Project Type", ["Code Project", "Papers Project", "AI Project"]) # Initialize or load tree if 'current_tree' not in st.session_state: if selected_saved_tree != "None" and selected_saved_tree in saved_trees: st.session_state['current_tree'] = saved_trees[selected_saved_tree] else: st.session_state['current_tree'] = trees.get("ML Engineering", project_seeds[project_type]) elif selected_saved_tree != "None" and selected_saved_tree in saved_trees: st.session_state['current_tree'] = saved_trees[selected_saved_tree] # Select Search Agent for Node Links search_agent = st.selectbox("Select Search Agent for Node Links", list(search_urls.keys()), index=5) # Default to X # Tree Growth new_node = st.text_input("Add New Node") parent_node = st.text_input("Parent Node") if st.button("Grow Tree ๐ŸŒฑ") and new_node and parent_node: st.session_state['current_tree'] = grow_tree(st.session_state['current_tree'], new_node, parent_node) # Save to a new file with the node names saved_file = save_tree_to_file(st.session_state['current_tree'], parent_node, new_node) st.success(f"Added '{new_node}' under '{parent_node}' and saved to {saved_file}!") # Also update the temporary current_tree.md for compatibility with open("current_tree.md", "w") as f: f.write(st.session_state['current_tree']) # Display Mermaid Diagram st.markdown("### Knowledge Tree Visualization") mermaid_code = parse_outline_to_mermaid(st.session_state['current_tree'], search_agent) components.html(generate_mermaid_html(mermaid_code), height=600) # Export Tree if st.button("Export Tree as Markdown"): export_md = f"# Knowledge Tree\n\n## Outline\n{st.session_state['current_tree']}\n\n## Mermaid Diagram\n```mermaid\n{mermaid_code}\n```" with open("knowledge_tree.md", "w") as f: f.write(export_md) st.markdown(get_download_link("knowledge_tree.md", "text/markdown"), unsafe_allow_html=True) # AI Project: Model Building Options if project_type == "AI Project": st.subheader("AI Model Building Options") model_option = st.radio("Choose Model Building Method", ["Minimal ML Model from CSV", "SFT Fine-Tuning"]) if model_option == "Minimal ML Model from CSV": st.write("### Build Minimal ML Model from CSV") uploaded_file = st.file_uploader("Upload CSV", type="csv") if uploaded_file: df = pd.read_csv(uploaded_file) st.write("Columns:", df.columns.tolist()) feature_cols = st.multiselect("Select feature columns", df.columns) target_col = st.selectbox("Select target column", df.columns) if st.button("Train Model"): X = df[feature_cols].values y = df[target_col].values X_tensor = torch.tensor(X, dtype=torch.float32) y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1) dataset = TensorDataset(X_tensor, y_tensor) loader = DataLoader(dataset, batch_size=32, shuffle=True) model = nn.Linear(X.shape[1], 1) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.01) for epoch in range(10): for batch_X, batch_y in loader: optimizer.zero_grad() outputs = model(batch_X) loss = criterion(outputs, batch_y) loss.backward() optimizer.step() torch.save(model.state_dict(), "model.pth") app_code = f""" import streamlit as st import torch import torch.nn as nn model = nn.Linear({len(feature_cols)}, 1) model.load_state_dict(torch.load("model.pth")) model.eval() st.title("ML Model Demo") inputs = [] for col in {feature_cols}: inputs.append(st.number_input(col)) if st.button("Predict"): input_tensor = torch.tensor([inputs], dtype=torch.float32) prediction = model(input_tensor).item() st.write(f"Predicted {target_col}: {{prediction}}") """ with open("app.py", "w") as f: f.write(app_code) reqs = "streamlit\ntorch\npandas\n" with open("requirements.txt", "w") as f: f.write(reqs) readme = """ # ML Model Demo ## How to run 1. Install requirements: `pip install -r requirements.txt` 2. Run the app: `streamlit run app.py` 3. Input feature values and click "Predict". """ with open("README.md", "w") as f: f.write(readme) st.markdown(get_download_link("model.pth", "application/octet-stream"), unsafe_allow_html=True) st.markdown(get_download_link("app.py", "text/plain"), unsafe_allow_html=True) st.markdown(get_download_link("requirements.txt", "text/plain"), unsafe_allow_html=True) st.markdown(get_download_link("README.md", "text/markdown"), unsafe_allow_html=True) elif model_option == "SFT Fine-Tuning": st.write("### SFT Fine-Tuning with Small Models") # Model Configuration with st.expander("Model Configuration", expanded=True): base_model = st.selectbox( "Select Base Model", ["distilgpt2", "gpt2", "EleutherAI/pythia-70m"], # Small models suitable for SFT help="Choose a small model for fine-tuning" ) model_name = st.text_input("Model Name", "sft-model") domain = st.text_input("Target Domain", "general") # Generate Sample CSV if st.button("Generate Sample CSV"): sample_data = [ {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."}, {"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."}, {"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."}, ] with open("sft_data.csv", "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) writer.writeheader() writer.writerows(sample_data) st.markdown(get_download_link("sft_data.csv", "text/csv"), unsafe_allow_html=True) st.success("Sample CSV generated as 'sft_data.csv'!") # Fine-Tune with SFT uploaded_csv = st.file_uploader("Upload CSV for SFT (or use generated sample)", type="csv") if st.button("Fine-Tune Model") and (uploaded_csv or os.path.exists("sft_data.csv")): config = ModelConfig( name=model_name, base_model=base_model, size="small", domain=domain ) builder = ModelBuilder() # Load CSV csv_path = "sft_data.csv" if uploaded_csv: with open(csv_path, "wb") as f: f.write(uploaded_csv.read()) with st.status("Fine-tuning model...", expanded=True) as status: builder.load_base_model(config.base_model) builder.fine_tune_sft(csv_path) builder.save_model(config.model_path) status.update(label="Model fine-tuning completed!", state="complete") # Generate deployment files app_code = f""" import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("{config.model_path}") tokenizer = AutoTokenizer.from_pretrained("{config.model_path}") st.title("SFT Model Demo") input_text = st.text_area("Enter prompt") if st.button("Generate"): inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) st.write(tokenizer.decode(outputs[0], skip_special_tokens=True)) """ with open("sft_app.py", "w") as f: f.write(app_code) reqs = "streamlit\ntorch\ntransformers\n" with open("sft_requirements.txt", "w") as f: f.write(reqs) readme = f""" # SFT Model Demo ## How to run 1. Install requirements: `pip install -r sft_requirements.txt` 2. Run the app: `streamlit run sft_app.py` 3. Input a prompt and click "Generate". """ with open("sft_README.md", "w") as f: f.write(readme) st.markdown(get_download_link("sft_app.py", "text/plain"), unsafe_allow_html=True) st.markdown(get_download_link("sft_requirements.txt", "text/plain"), unsafe_allow_html=True) st.markdown(get_download_link("sft_README.md", "text/markdown"), unsafe_allow_html=True) st.write(f"Model saved at: {config.model_path}") if __name__ == "__main__": st.run()