Spaces:
Runtime error
Runtime error
File size: 11,938 Bytes
f09fbda f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 1cd253f f26f5bb 2a63666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import random
import uuid
import base64
import json
import re
import gradio as gr
import numpy as np
import pandas as pd
import torch
from PIL import Image
from datetime import datetime
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import anthropic
# ============================================================
# === GLOBALS & DATA STORAGE FILES
# ============================================================
LIKES_CACHE_FILE = "likes_cache.json"
LOG_CACHE_FILE = "log_cache.json"
QUOTE_CACHE_FILE = "quotes_cache.json"
STATIC_URL_PREFIX = "https://huggingface.co/spaces/awacke1/dalle-3-xl-lora-v2/file="
# Initialize caches / load from JSON
def load_json(file):
if os.path.exists(file):
with open(file, 'r', encoding='utf-8') as f:
return json.load(f)
return {}
def save_json(file, data):
with open(file, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=4)
likes_cache = load_json(LIKES_CACHE_FILE) or {}
chat_logs = load_json(LOG_CACHE_FILE) if os.path.exists(LOG_CACHE_FILE) else []
quotes = load_json(QUOTE_CACHE_FILE) if os.path.exists(QUOTE_CACHE_FILE) else []
# DataFrame for images
image_metadata = pd.DataFrame(columns=['Filename','Prompt','Likes','Dislikes','Hearts','Created'])
# ============================================================
# === ANTHROPIC CLIENT (Claude)
# ============================================================
anthropic_api_key = os.environ.get("ANTHROPIC_API_KEY", None)
claude_client = anthropic.Anthropic(api_key=anthropic_api_key) if anthropic_api_key else None
# ============================================================
# === IMAGE PIPELINE
# ============================================================
pipe = None
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"fluently/Fluently-XL-v4",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
pipe.set_adapters("dalle")
pipe.to("cuda")
MAX_SEED = np.iinfo(np.int32).max
# ============================================================
# === HELPER FUNCTIONS
# ============================================================
def randomize_seed_fn(seed: int, randomize_seed: bool):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return int(seed)
def sanitize_prompt(prompt):
return re.sub(r'[^\w\s-]', '', prompt.lower())[:50]
def save_image_locally(img, prompt):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_prompt = sanitize_prompt(prompt)
filename = f"{timestamp}_{safe_prompt}.png"
img.save(filename)
if filename not in likes_cache:
likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0}
save_json(LIKES_CACHE_FILE, likes_cache)
global image_metadata
new_row = {
'Filename': filename,
'Prompt': prompt,
'Likes': 0,
'Dislikes': 0,
'Hearts': 0,
'Created': str(datetime.now())
}
image_metadata = pd.concat([image_metadata, pd.DataFrame([new_row])], ignore_index=True)
return filename
def log_input_output(user_input, model_output, link=""):
global chat_logs
chat_logs.append({
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"input": user_input,
"output": model_output,
"file_link": link
})
save_json(LOG_CACHE_FILE, chat_logs)
def generate_image(
prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed
):
if pipe is None:
return ["No GPU available, cannot generate images."], 0, [], [], []
seed = randomize_seed_fn(seed, randomize_seed)
if not use_negative_prompt:
negative_prompt = ""
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=20,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
filenames = []
for img in images:
fname = save_image_locally(img, prompt)
filenames.append(fname)
links = [f"{STATIC_URL_PREFIX}{f}" for f in filenames]
# Log the generation
log_input_output(user_input=prompt, model_output="(image generated)", link=", ".join(links))
# Return Gradio objects
return filenames, seed, links, get_image_gallery(), image_metadata.values.tolist()
def get_image_gallery():
return [
(row["Filename"], f"{row['Filename']}\nPrompt: {row['Prompt']}\n👍 {row['Likes']} 👎 {row['Dislikes']} ❤️ {row['Hearts']}")
for _, row in image_metadata.iterrows()
if os.path.exists(row["Filename"])
]
def vote_image(filename, vote_type):
if filename and filename in likes_cache:
likes_cache[filename][vote_type] += 1
save_json(LIKES_CACHE_FILE, likes_cache)
idx = image_metadata.index[image_metadata['Filename'] == filename]
if not idx.empty:
image_metadata.at[idx, vote_type.capitalize()] = image_metadata.at[idx, vote_type.capitalize()] + 1
return get_image_gallery(), image_metadata.values.tolist()
def delete_image(filename):
if filename and os.path.exists(filename):
os.remove(filename)
if filename in likes_cache:
del likes_cache[filename]
save_json(LIKES_CACHE_FILE, likes_cache)
global image_metadata
image_metadata = image_metadata[image_metadata['Filename'] != filename]
return get_image_gallery(), image_metadata.values.tolist()
def delete_all_images():
global image_metadata, likes_cache
for f in image_metadata["Filename"].tolist():
if os.path.exists(f):
os.remove(f)
image_metadata = pd.DataFrame(columns=['Filename','Prompt','Likes','Dislikes','Hearts','Created'])
likes_cache.clear()
save_json(LIKES_CACHE_FILE, likes_cache)
return get_image_gallery(), image_metadata.values.tolist()
# === QUOTES Demo (Optional) ===
def add_quote(q):
if q.strip():
quotes.append({
"text": q,
"likes": 0,
"created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
save_json(QUOTE_CACHE_FILE, quotes)
return [[idx, itm["text"], itm["likes"], itm["created"]] for idx, itm in enumerate(quotes)]
def like_quote(idx):
if 0 <= idx < len(quotes):
quotes[idx]["likes"] += 1
save_json(QUOTE_CACHE_FILE, quotes)
return [[i, itm["text"], itm["likes"], itm["created"]] for i, itm in enumerate(quotes)]
# === CLAUDE Chat ===
def chat_claude(user_message):
if not claude_client:
return "No Anthropic API key configured."
if not user_message.strip():
return "Empty message."
resp = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": user_message}],
)
text = resp.content[0].text
log_input_output(user_input=user_message, model_output=text, link="")
return text
# === Refresh gallery + DF
def refresh_gallery_and_df():
return gr.update(value=get_image_gallery()), gr.update(value=image_metadata.values.tolist())
# ============================================================
# === BUILD GRADIO UI
# ============================================================
DESCRIPTION = """# 🎨 ArtForge & Claude Chat
Generate AI art, chat with Claude, log everything, and vote on images.
"""
examples = [
"Futuristic cityscape in neon lighting",
"Cute cat wearing a wizard hat",
"Surreal landscape with floating islands",
]
with gr.Blocks(css=".gradio-container {max-width: 1024px !important}") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab("Generate Images"):
with gr.Row():
prompt = gr.Text(label="Prompt", max_lines=1)
run_button = gr.Button("Run")
result = gr.Gallery(label="Result", columns=1, preview=True)
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=3,
value="(deformed, distorted:1.3), poorly drawn, bad anatomy",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024)
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, step=0.5, value=7)
run_button.click(
fn=generate_image,
inputs=[prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed],
outputs=[result, seed, gr.HTML(visible=False), gr.Gallery(), gr.Dataframe()],
api_name="run"
)
gr.Examples(examples=examples, inputs=prompt)
with gr.Tab("Chat with Claude"):
claude_input = gr.Textbox(label="Your Message")
claude_output = gr.Textbox(label="Claude's Reply", lines=4)
send_claude = gr.Button("Send to Claude")
send_claude.click(chat_claude, inputs=claude_input, outputs=claude_output)
with gr.Tab("Logs & Management"):
with gr.Accordion("All Logs", open=False):
logs_data = gr.Dataframe(
value=pd.DataFrame(chat_logs),
label="Input/Output Logs",
interactive=False,
wrap=True
)
with gr.Tab("Gallery & Voting"):
image_gallery = gr.Gallery(label="Generated Images", columns=4)
metadata_df = gr.Dataframe(
label="Image Metadata",
headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"],
interactive=False
)
selected_image = gr.State()
with gr.Row():
like_button = gr.Button("👍 Like")
dislike_button = gr.Button("👎 Dislike")
heart_button = gr.Button("❤️ Heart")
delete_image_button = gr.Button("🗑️ Delete Image")
delete_all_button = gr.Button("🗑️ Delete All")
image_gallery.select(fn=lambda evt: evt, inputs=[], outputs=[selected_image])
like_button.click(fn=lambda x: vote_image(x, 'likes'), inputs=selected_image, outputs=[image_gallery, metadata_df])
dislike_button.click(fn=lambda x: vote_image(x, 'dislikes'), inputs=selected_image, outputs=[image_gallery, metadata_df])
heart_button.click(fn=lambda x: vote_image(x, 'hearts'), inputs=selected_image, outputs=[image_gallery, metadata_df])
delete_image_button.click(fn=delete_image, inputs=selected_image, outputs=[image_gallery, metadata_df])
delete_all_button.click(fn=delete_all_images, outputs=[image_gallery, metadata_df])
with gr.Tab("Quotes (Optional)"):
quote_input = gr.Textbox(label="Enter a quote")
add_q_button = gr.Button("Add Quote")
quote_df = gr.Dataframe(value=[(idx, q['text'], q['likes'], q['created']) for idx,q in enumerate(quotes)],
headers=["Index","Text","Likes","Created"], interactive=False)
selected_quote = gr.Number(label="Index to Like")
like_q_button = gr.Button("Like Quote")
add_q_button.click(fn=add_quote, inputs=quote_input, outputs=quote_df)
like_q_button.click(fn=like_quote, inputs=selected_quote, outputs=quote_df)
demo.load(fn=refresh_gallery_and_df, outputs=[image_gallery, metadata_df])
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|