File size: 11,938 Bytes
f09fbda
f26f5bb
 
 
1cd253f
 
f26f5bb
 
1cd253f
f26f5bb
1cd253f
f26f5bb
 
1cd253f
f26f5bb
1cd253f
 
 
f26f5bb
1cd253f
 
 
 
f26f5bb
1cd253f
 
 
 
f26f5bb
 
 
1cd253f
 
 
f26f5bb
1cd253f
 
 
f26f5bb
1cd253f
 
f26f5bb
1cd253f
 
 
 
 
f26f5bb
1cd253f
 
 
 
f26f5bb
 
 
 
 
 
 
 
 
 
 
1cd253f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26f5bb
1cd253f
 
f26f5bb
1cd253f
f26f5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd253f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26f5bb
 
1cd253f
 
 
f26f5bb
 
1cd253f
f26f5bb
 
 
 
1cd253f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26f5bb
1cd253f
 
f26f5bb
 
 
 
 
1cd253f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26f5bb
1cd253f
 
f26f5bb
 
 
 
2a63666
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import random
import uuid
import base64
import json
import re
import gradio as gr
import numpy as np
import pandas as pd
import torch
from PIL import Image
from datetime import datetime
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import anthropic

# ============================================================
# === GLOBALS & DATA STORAGE FILES
# ============================================================
LIKES_CACHE_FILE = "likes_cache.json"
LOG_CACHE_FILE = "log_cache.json"
QUOTE_CACHE_FILE = "quotes_cache.json"

STATIC_URL_PREFIX = "https://huggingface.co/spaces/awacke1/dalle-3-xl-lora-v2/file="

# Initialize caches / load from JSON
def load_json(file):
    if os.path.exists(file):
        with open(file, 'r', encoding='utf-8') as f:
            return json.load(f)
    return {}

def save_json(file, data):
    with open(file, 'w', encoding='utf-8') as f:
        json.dump(data, f, indent=4)

likes_cache = load_json(LIKES_CACHE_FILE) or {}
chat_logs = load_json(LOG_CACHE_FILE) if os.path.exists(LOG_CACHE_FILE) else []
quotes = load_json(QUOTE_CACHE_FILE) if os.path.exists(QUOTE_CACHE_FILE) else []

# DataFrame for images
image_metadata = pd.DataFrame(columns=['Filename','Prompt','Likes','Dislikes','Hearts','Created'])

# ============================================================
# === ANTHROPIC CLIENT (Claude)
# ============================================================
anthropic_api_key = os.environ.get("ANTHROPIC_API_KEY", None)
claude_client = anthropic.Anthropic(api_key=anthropic_api_key) if anthropic_api_key else None

# ============================================================
# === IMAGE PIPELINE
# ============================================================
pipe = None
if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "fluently/Fluently-XL-v4",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
    pipe.set_adapters("dalle")
    pipe.to("cuda")

MAX_SEED = np.iinfo(np.int32).max

# ============================================================
# === HELPER FUNCTIONS
# ============================================================
def randomize_seed_fn(seed: int, randomize_seed: bool):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return int(seed)

def sanitize_prompt(prompt):
    return re.sub(r'[^\w\s-]', '', prompt.lower())[:50]

def save_image_locally(img, prompt):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    safe_prompt = sanitize_prompt(prompt)
    filename = f"{timestamp}_{safe_prompt}.png"
    img.save(filename)
    if filename not in likes_cache:
        likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0}
        save_json(LIKES_CACHE_FILE, likes_cache)
    global image_metadata
    new_row = {
        'Filename': filename,
        'Prompt': prompt,
        'Likes': 0,
        'Dislikes': 0,
        'Hearts': 0,
        'Created': str(datetime.now())
    }
    image_metadata = pd.concat([image_metadata, pd.DataFrame([new_row])], ignore_index=True)
    return filename

def log_input_output(user_input, model_output, link=""):
    global chat_logs
    chat_logs.append({
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "input": user_input,
        "output": model_output,
        "file_link": link
    })
    save_json(LOG_CACHE_FILE, chat_logs)

def generate_image(
    prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed
):
    if pipe is None:
        return ["No GPU available, cannot generate images."], 0, [], [], []

    seed = randomize_seed_fn(seed, randomize_seed)
    if not use_negative_prompt:
        negative_prompt = ""

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=20,
        num_images_per_prompt=1,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images

    filenames = []
    for img in images:
        fname = save_image_locally(img, prompt)
        filenames.append(fname)

    links = [f"{STATIC_URL_PREFIX}{f}" for f in filenames]
    # Log the generation
    log_input_output(user_input=prompt, model_output="(image generated)", link=", ".join(links))

    # Return Gradio objects
    return filenames, seed, links, get_image_gallery(), image_metadata.values.tolist()

def get_image_gallery():
    return [
        (row["Filename"], f"{row['Filename']}\nPrompt: {row['Prompt']}\n👍 {row['Likes']} 👎 {row['Dislikes']} ❤️ {row['Hearts']}")
        for _, row in image_metadata.iterrows()
        if os.path.exists(row["Filename"])
    ]

def vote_image(filename, vote_type):
    if filename and filename in likes_cache:
        likes_cache[filename][vote_type] += 1
        save_json(LIKES_CACHE_FILE, likes_cache)
        idx = image_metadata.index[image_metadata['Filename'] == filename]
        if not idx.empty:
            image_metadata.at[idx, vote_type.capitalize()] = image_metadata.at[idx, vote_type.capitalize()] + 1
    return get_image_gallery(), image_metadata.values.tolist()

def delete_image(filename):
    if filename and os.path.exists(filename):
        os.remove(filename)
    if filename in likes_cache:
        del likes_cache[filename]
        save_json(LIKES_CACHE_FILE, likes_cache)
    global image_metadata
    image_metadata = image_metadata[image_metadata['Filename'] != filename]
    return get_image_gallery(), image_metadata.values.tolist()

def delete_all_images():
    global image_metadata, likes_cache
    for f in image_metadata["Filename"].tolist():
        if os.path.exists(f):
            os.remove(f)
    image_metadata = pd.DataFrame(columns=['Filename','Prompt','Likes','Dislikes','Hearts','Created'])
    likes_cache.clear()
    save_json(LIKES_CACHE_FILE, likes_cache)
    return get_image_gallery(), image_metadata.values.tolist()

# === QUOTES Demo (Optional) ===
def add_quote(q):
    if q.strip():
        quotes.append({
            "text": q,
            "likes": 0,
            "created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        })
        save_json(QUOTE_CACHE_FILE, quotes)
    return [[idx, itm["text"], itm["likes"], itm["created"]] for idx, itm in enumerate(quotes)]

def like_quote(idx):
    if 0 <= idx < len(quotes):
        quotes[idx]["likes"] += 1
    save_json(QUOTE_CACHE_FILE, quotes)
    return [[i, itm["text"], itm["likes"], itm["created"]] for i, itm in enumerate(quotes)]

# === CLAUDE Chat ===
def chat_claude(user_message):
    if not claude_client:
        return "No Anthropic API key configured."
    if not user_message.strip():
        return "Empty message."
    resp = claude_client.messages.create(
        model="claude-3-sonnet-20240229",
        max_tokens=1000,
        messages=[{"role": "user", "content": user_message}],
    )
    text = resp.content[0].text
    log_input_output(user_input=user_message, model_output=text, link="")
    return text

# === Refresh gallery + DF
def refresh_gallery_and_df():
    return gr.update(value=get_image_gallery()), gr.update(value=image_metadata.values.tolist())

# ============================================================
# === BUILD GRADIO UI
# ============================================================
DESCRIPTION = """# 🎨 ArtForge & Claude Chat
Generate AI art, chat with Claude, log everything, and vote on images.
"""

examples = [
    "Futuristic cityscape in neon lighting",
    "Cute cat wearing a wizard hat",
    "Surreal landscape with floating islands",
]

with gr.Blocks(css=".gradio-container {max-width: 1024px !important}") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Tab("Generate Images"):
        with gr.Row():
            prompt = gr.Text(label="Prompt", max_lines=1)
            run_button = gr.Button("Run")
        result = gr.Gallery(label="Result", columns=1, preview=True)
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            lines=3,
            value="(deformed, distorted:1.3), poorly drawn, bad anatomy",
        )
        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024)
        height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024)
        guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, step=0.5, value=7)
        run_button.click(
            fn=generate_image,
            inputs=[prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed],
            outputs=[result, seed, gr.HTML(visible=False), gr.Gallery(), gr.Dataframe()],
            api_name="run"
        )
        gr.Examples(examples=examples, inputs=prompt)

    with gr.Tab("Chat with Claude"):
        claude_input = gr.Textbox(label="Your Message")
        claude_output = gr.Textbox(label="Claude's Reply", lines=4)
        send_claude = gr.Button("Send to Claude")
        send_claude.click(chat_claude, inputs=claude_input, outputs=claude_output)

    with gr.Tab("Logs & Management"):
        with gr.Accordion("All Logs", open=False):
            logs_data = gr.Dataframe(
                value=pd.DataFrame(chat_logs),
                label="Input/Output Logs",
                interactive=False,
                wrap=True
            )

    with gr.Tab("Gallery & Voting"):
        image_gallery = gr.Gallery(label="Generated Images", columns=4)
        metadata_df = gr.Dataframe(
            label="Image Metadata",
            headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"],
            interactive=False
        )
        selected_image = gr.State()
        with gr.Row():
            like_button = gr.Button("👍 Like")
            dislike_button = gr.Button("👎 Dislike")
            heart_button = gr.Button("❤️ Heart")
            delete_image_button = gr.Button("🗑️ Delete Image")
            delete_all_button = gr.Button("🗑️ Delete All")
        image_gallery.select(fn=lambda evt: evt, inputs=[], outputs=[selected_image])
        like_button.click(fn=lambda x: vote_image(x, 'likes'), inputs=selected_image, outputs=[image_gallery, metadata_df])
        dislike_button.click(fn=lambda x: vote_image(x, 'dislikes'), inputs=selected_image, outputs=[image_gallery, metadata_df])
        heart_button.click(fn=lambda x: vote_image(x, 'hearts'), inputs=selected_image, outputs=[image_gallery, metadata_df])
        delete_image_button.click(fn=delete_image, inputs=selected_image, outputs=[image_gallery, metadata_df])
        delete_all_button.click(fn=delete_all_images, outputs=[image_gallery, metadata_df])

    with gr.Tab("Quotes (Optional)"):
        quote_input = gr.Textbox(label="Enter a quote")
        add_q_button = gr.Button("Add Quote")
        quote_df = gr.Dataframe(value=[(idx, q['text'], q['likes'], q['created']) for idx,q in enumerate(quotes)],
                                headers=["Index","Text","Likes","Created"], interactive=False)
        selected_quote = gr.Number(label="Index to Like")
        like_q_button = gr.Button("Like Quote")
        add_q_button.click(fn=add_quote, inputs=quote_input, outputs=quote_df)
        like_q_button.click(fn=like_quote, inputs=selected_quote, outputs=quote_df)

    demo.load(fn=refresh_gallery_and_df, outputs=[image_gallery, metadata_df])

if __name__ == "__main__":
    demo.queue(max_size=20).launch()