Spaces:
Runtime error
Runtime error
File size: 10,410 Bytes
cabb8e7 9e21cc4 cabb8e7 66a80c0 cabb8e7 66a80c0 86b8f91 9e21cc4 cabb8e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
#!/usr/bin/env python
import os
import random
import uuid
import base64
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
import glob
from datetime import datetime
import json
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTION = """# DALL•E 3 XL v2 High Fi"""
VOTE_FILE = "vote_counts.json"
def load_vote_counts():
if os.path.exists(VOTE_FILE):
with open(VOTE_FILE, "r") as f:
return json.load(f)
return {}
def save_vote_counts(vote_counts):
with open(VOTE_FILE, "w") as f:
json.dump(vote_counts, f)
vote_counts = load_vote_counts()
def create_download_link(filename):
with open(filename, "rb") as file:
encoded_string = base64.b64encode(file.read()).decode('utf-8')
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
return download_link
def save_image(img, prompt):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{timestamp}_{prompt[:50]}.png" # Limit filename length
img.save(filename)
return filename
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_image_gallery():
image_files = glob.glob("*.png")
image_files.sort(key=lambda x: calculate_score(x), reverse=True)
return [(file, f"{file}\n👍 {vote_counts.get(file, {}).get('likes', 0)} 👎 {vote_counts.get(file, {}).get('dislikes', 0)} ❤️ {vote_counts.get(file, {}).get('hearts', 0)}") for file in image_files]
def calculate_score(filename):
counts = vote_counts.get(filename, {})
return (counts.get('hearts', 0) * 5) + counts.get('likes', 0) - counts.get('dislikes', 0)
def delete_all_images():
for file in glob.glob("*.png"):
os.remove(file)
vote_counts.clear()
save_vote_counts(vote_counts)
return get_image_gallery()
def vote(filename, vote_type):
if filename not in vote_counts:
vote_counts[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0}
vote_counts[filename][vote_type] += 1
save_vote_counts(vote_counts)
return get_image_gallery()
def get_random_style():
styles = [
"Impressionist", "Cubist", "Surrealist", "Abstract Expressionist",
"Pop Art", "Minimalist", "Baroque", "Art Nouveau", "Pointillist", "Fauvism"
]
return random.choice(styles)
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"fluently/Fluently-XL-v4",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
pipe.set_adapters("dalle")
pipe.to("cuda")
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = ""
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=20,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths = [save_image(img, prompt) for img in images]
download_links = [create_download_link(path) for path in image_paths]
return image_paths, seed, download_links, get_image_gallery()
examples = [
f"{get_random_style()} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.",
f"{get_random_style()} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.",
f"{get_random_style()} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.",
f"{get_random_style()} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.",
f"{get_random_style()} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.",
f"{get_random_style()} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.",
f"{get_random_style()} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.",
f"{get_random_style()} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.",
f"{get_random_style()} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.",
f"{get_random_style()} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach."
]
css = '''
.gradio-container{max-width: 1024px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=4,
max_lines=6,
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1920,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1080,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=20.0,
)
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto")
with gr.Row():
delete_all_button = gr.Button("🗑️ Delete All Images")
like_button = gr.Button("👍 Like")
dislike_button = gr.Button("👎 Dislike")
heart_button = gr.Button("❤️ Heart")
selected_image = gr.State(None)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
delete_all_button.click(
fn=delete_all_images,
inputs=[],
outputs=[image_gallery],
)
image_gallery.select(
fn=lambda evt: evt,
inputs=[gr.State("value")],
outputs=[selected_image],
)
like_button.click(
fn=lambda x: vote(x, 'likes') if x else None,
inputs=[selected_image],
outputs=[image_gallery],
)
dislike_button.click(
fn=lambda x: vote(x, 'dislikes') if x else None,
inputs=[selected_image],
outputs=[image_gallery],
)
heart_button.click(
fn=lambda x: vote(x, 'hearts') if x else None,
inputs=[selected_image],
outputs=[image_gallery],
)
def update_gallery():
return gr.update(value=get_image_gallery())
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed, gr.HTML(visible=False), image_gallery],
api_name="run",
)
demo.load(fn=update_gallery, outputs=image_gallery)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False) |