import os import random import uuid import base64 import gradio as gr import numpy as np from PIL import Image import spaces import torch import glob from datetime import datetime import pandas as pd import json import re from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler DESCRIPTION = """# šØ ArtForge: Community AI Gallery Create, curate, and compete with AI-generated art. Join our creative multiplayer experience! š¼ļøšāØ """ # Global variables image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created']) LIKES_CACHE_FILE = "likes_cache.json" def load_likes_cache(): if os.path.exists(LIKES_CACHE_FILE): with open(LIKES_CACHE_FILE, 'r') as f: return json.load(f) return {} def save_likes_cache(cache): with open(LIKES_CACHE_FILE, 'w') as f: json.dump(cache, f) likes_cache = load_likes_cache() def create_download_link(filename): with open(filename, "rb") as file: encoded_string = base64.b64encode(file.read()).decode('utf-8') download_link = f'Download Image' return download_link def save_image(img, prompt): global image_metadata, likes_cache timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") safe_prompt = re.sub(r'[^\w\s-]', '', prompt.lower())[:50] # Limit to 50 characters safe_prompt = re.sub(r'[-\s]+', '-', safe_prompt).strip('-') filename = f"{timestamp}_{safe_prompt}.png" img.save(filename) new_row = pd.DataFrame({ 'Filename': [filename], 'Prompt': [prompt], 'Likes': [0], 'Dislikes': [0], 'Hearts': [0], 'Created': [datetime.now()] }) image_metadata = pd.concat([image_metadata, new_row], ignore_index=True) likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0} save_likes_cache(likes_cache) return filename def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def get_image_gallery(): global image_metadata image_files = image_metadata['Filename'].tolist() return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)] def get_image_caption(filename): global likes_cache, image_metadata if filename in likes_cache: likes = likes_cache[filename]['likes'] dislikes = likes_cache[filename]['dislikes'] hearts = likes_cache[filename]['hearts'] prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0] return f"{filename}\nPrompt: {prompt}\nš {likes} š {dislikes} ā¤ļø {hearts}" return filename def delete_all_images(): global image_metadata, likes_cache for file in image_metadata['Filename']: if os.path.exists(file): os.remove(file) image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created']) likes_cache = {} save_likes_cache(likes_cache) return get_image_gallery(), image_metadata.values.tolist() def delete_image(filename): global image_metadata, likes_cache if filename and os.path.exists(filename): os.remove(filename) image_metadata = image_metadata[image_metadata['Filename'] != filename] if filename in likes_cache: del likes_cache[filename] save_likes_cache(likes_cache) return get_image_gallery(), image_metadata.values.tolist() def vote(filename, vote_type): global likes_cache if filename in likes_cache: likes_cache[filename][vote_type.lower()] += 1 save_likes_cache(likes_cache) return get_image_gallery(), image_metadata.values.tolist() def get_random_style(): styles = [ "Impressionist", "Cubist", "Surrealist", "Abstract Expressionist", "Pop Art", "Minimalist", "Baroque", "Art Nouveau", "Pointillist", "Fauvism" ] return random.choice(styles) MAX_SEED = np.iinfo(np.int32).max if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU š„¶ This demo may not work on CPU.
" USE_TORCH_COMPILE = 0 ENABLE_CPU_OFFLOAD = 0 if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( "fluently/Fluently-XL-v4", torch_dtype=torch.float16, use_safetensors=True, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle") pipe.set_adapters("dalle") pipe.to("cuda") @spaces.GPU(enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) if not use_negative_prompt: negative_prompt = "" images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=20, num_images_per_prompt=1, cross_attention_kwargs={"scale": 0.65}, output_type="pil", ).images image_paths = [save_image(img, prompt) for img in images] download_links = [create_download_link(path) for path in image_paths] return image_paths, seed, download_links, get_image_gallery(), image_metadata.values.tolist() examples = [ f"{get_random_style()} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.", f"{get_random_style()} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.", f"{get_random_style()} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.", f"{get_random_style()} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.", f"{get_random_style()} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.", f"{get_random_style()} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.", f"{get_random_style()} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.", f"{get_random_style()} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.", f"{get_random_style()} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.", f"{get_random_style()} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach." ] css = ''' .gradio-container{max-width: 1024px !important} h1{text-align:center} footer { visibility: hidden } ''' with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab("Generate Images"): with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) with gr.Accordion("Advanced options", open=False): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", lines=4, max_lines=6, value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""", placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, visible=True ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=2048, step=8, value=1920, ) height = gr.Slider( label="Height", minimum=512, maximum=2048, step=8, value=1080, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=20.0, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=False, ) with gr.Tab("Gallery and Voting"): image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto") with gr.Row(): like_button = gr.Button("š Like") dislike_button = gr.Button("š Dislike") heart_button = gr.Button("ā¤ļø Heart") delete_image_button = gr.Button("šļø Delete Selected Image") selected_image = gr.State(None) with gr.Tab("Metadata and Management"): metadata_df = gr.Dataframe( label="Image Metadata", headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"], interactive=False ) delete_all_button = gr.Button("šļø Delete All Images") use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) delete_all_button.click( fn=delete_all_images, inputs=[], outputs=[image_gallery, metadata_df], ) image_gallery.select( fn=lambda evt: evt, inputs=[], outputs=[selected_image], ) like_button.click( fn=lambda x: vote(x, 'likes'), inputs=[selected_image], outputs=[image_gallery, metadata_df], ) dislike_button.click( fn=lambda x: vote(x, 'dislikes'), inputs=[selected_image], outputs=[image_gallery, metadata_df], ) heart_button.click( fn=lambda x: vote(x, 'hearts'), inputs=[selected_image], outputs=[image_gallery, metadata_df], ) delete_image_button.click( fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df], ) def update_gallery_and_metadata(): return gr.update(value=get_image_gallery()), gr.update(value=image_metadata.values.tolist()) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed, ], outputs=[result, seed, gr.HTML(visible=False), image_gallery, metadata_df], api_name="run", ) demo.load(fn=update_gallery_and_metadata, outputs=[image_gallery, metadata_df]) if __name__ == "__main__": demo.queue(max_size=20).launch(share=True, debug=False)