File size: 11,003 Bytes
92acab8
e8f8f3c
 
 
75808a5
e8f8f3c
92acab8
 
75808a5
92acab8
75808a5
dbc6fc5
75808a5
92acab8
 
e8f8f3c
92acab8
b50d4ec
 
 
 
e8f8f3c
 
 
 
 
 
b50d4ec
 
e8f8f3c
 
 
 
 
 
 
 
 
 
 
 
 
b50d4ec
92acab8
 
 
 
75808a5
 
92acab8
75808a5
 
 
 
 
 
 
 
 
 
 
dbc6fc5
92acab8
 
75808a5
784b974
dbc6fc5
92acab8
b50d4ec
92acab8
b50d4ec
92acab8
 
 
 
b50d4ec
 
 
92acab8
75808a5
92acab8
75808a5
784b974
b50d4ec
92acab8
75808a5
92acab8
dbc6fc5
 
92acab8
 
 
 
 
b50d4ec
 
 
 
 
 
92acab8
e8f8f3c
 
 
75808a5
 
92acab8
75808a5
 
 
 
 
 
 
e8f8f3c
75808a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f8f3c
75808a5
e8f8f3c
75808a5
 
92acab8
 
 
 
 
 
 
 
 
75808a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbc6fc5
 
 
75808a5
 
92acab8
 
 
e8f8f3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75808a5
 
 
e8f8f3c
75808a5
 
 
e8f8f3c
75808a5
e8f8f3c
75808a5
 
 
 
e8f8f3c
75808a5
 
e8f8f3c
75808a5
 
 
e8f8f3c
75808a5
 
 
 
e8f8f3c
 
 
75808a5
e8f8f3c
75808a5
e8f8f3c
 
 
 
 
 
75808a5
 
 
 
 
 
e8f8f3c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import random
import argparse
import os
import glob
import json
import rtmidi
import gradio as gr
import numpy as np
import onnxruntime as rt
from huggingface_hub import hf_hub_download
import MIDI
from midi_synthesizer import MidiSynthesizer
from midi_tokenizer import MIDITokenizer

MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"

class MIDIDeviceManager:
    def __init__(self):
        self.midiout = rtmidi.MidiOut()
        self.midiin = rtmidi.MidiIn()

    def get_output_devices(self):
        return self.midiout.get_ports() or ["No MIDI output devices"]

    def get_input_devices(self):
        return self.midiin.get_ports() or ["No MIDI input devices"]

    def get_device_info(self):
        out_devices = self.get_output_devices()
        in_devices = self.get_input_devices()
        out_info = "\n".join([f"Out Port {i}: {name}" for i, name in enumerate(out_devices)]) if out_devices else "No MIDI output devices detected"
        in_info = "\n".join([f"In Port {i}: {name}" for i, name in enumerate(in_devices)]) if in_devices else "No MIDI input devices detected"
        return f"Output Devices:\n{out_info}\n\nInput Devices:\n{in_info}"

    def close(self):
        if self.midiout.is_port_open():
            self.midiout.close_port()
        if self.midiin.is_port_open():
            self.midiin.close_port()
        del self.midiout
        del self.midiin

class MIDIManager:
    def __init__(self):
        self.soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
        self.synthesizer = MidiSynthesizer(self.soundfont_path)
        self.loaded_midi = {}
        self.modified_files = []
        self.is_playing = False
        self.tokenizer = self.load_tokenizer("skytnt/midi-model")
        self.model_base = rt.InferenceSession(hf_hub_download(repo_id="skytnt/midi-model", filename="onnx/model_base.onnx"), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.model_token = rt.InferenceSession(hf_hub_download(repo_id="skytnt/midi-model", filename="onnx/model_token.onnx"), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])

    def load_tokenizer(self, repo_id):
        config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
        with open(config_path, "r") as f:
            config = json.load(f)
        tokenizer = MIDITokenizer(config["tokenizer"]["version"])
        tokenizer.set_optimise_midi(config["tokenizer"]["optimise_midi"])
        return tokenizer

    def load_midi(self, file_path):
        midi = MIDI.load(file_path)
        midi_id = f"midi_{len(self.loaded_midi)}"
        self.loaded_midi[midi_id] = (file_path, midi)
        return midi_id

    def extract_notes_and_instruments(self, midi):
        notes = []
        instruments = set()
        for track in midi.tracks:
            for event in track.events:
                if event.type == 'note_on' and event.velocity > 0:
                    notes.append((event.note, event.velocity, event.time))
                if hasattr(event, 'program'):
                    instruments.add(event.program)
        return notes, list(instruments)

    def generate_variation(self, midi_id, length_factor=10, variation=0.3):
        if midi_id not in self.loaded_midi:
            return None
        _, midi = self.loaded_midi[midi_id]
        notes, instruments = self.extract_notes_and_instruments(midi)
        new_notes = []
        for _ in range(int(length_factor)):  # Max length: 10x repetition
            for note, vel, time in notes:
                if random.random() < variation:
                    new_note = min(127, max(0, note + random.randint(-2, 2)))
                    new_vel = min(127, max(0, vel + random.randint(-10, 10)))
                    new_notes.append((new_note, new_vel, time))
                else:
                    new_notes.append((note, vel, time))

        new_midi = MIDI.MIDIFile(len(instruments) or 1)
        for i, inst in enumerate(instruments or [0]):
            new_midi.addTrack()
            new_midi.addProgramChange(i, 0, 0, inst)
            for note, vel, time in new_notes:
                new_midi.addNote(i, 0, note, time, 100, vel)
        
        midi_output = io.BytesIO()
        new_midi.writeFile(midi_output)
        midi_data = base64.b64encode(midi_output.getvalue()).decode('utf-8')
        self.modified_files.append(midi_data)
        return midi_data

    def generate_onnx(self, midi_id, max_len=1024, temp=1.0, top_p=0.98, top_k=20):
        if midi_id not in self.loaded_midi:
            return None
        _, mid = self.loaded_midi[midi_id]
        mid_seq = self.tokenizer.tokenize(MIDI.midi2score(mid))
        mid = np.asarray([mid_seq], dtype=np.int64)
        generator = np.random.RandomState(random.randint(0, MAX_SEED))
        
        # Simplified ONNX generation from app_onnx.py
        input_tensor = mid
        cur_len = input_tensor.shape[1]
        model = [self.model_base, self.model_token, self.tokenizer]
        
        while cur_len < max_len:
            inputs = {"x": rt.OrtValue.ortvalue_from_numpy(input_tensor[:, -1:], device_type="cuda")}
            outputs = {"hidden": rt.OrtValue.ortvalue_from_shape_and_type((1, 1, 1024), np.float32, device_type="cuda")}
            io_binding = model[0].io_binding()
            for name, val in inputs.items():
                io_binding.bind_ortvalue_input(name, val)
            for name in outputs:
                io_binding.bind_ortvalue_output(name, outputs[name])
            model[0].run_with_iobinding(io_binding)
            hidden = outputs["hidden"].numpy()[:, -1:]

            logits = model[1].run(None, {"hidden": hidden})[0]
            scores = softmax(logits / temp, -1)
            next_token = sample_top_p_k(scores, top_p, top_k, generator)
            input_tensor = np.concatenate([input_tensor, next_token], axis=1)
            cur_len += 1

        mid_seq = input_tensor.tolist()[0]
        new_midi = self.tokenizer.detokenize(mid_seq)
        midi_output = io.BytesIO()
        MIDI.score2midi(new_midi, midi_output)
        midi_data = base64.b64encode(midi_output.getvalue()).decode('utf-8')
        self.modified_files.append(midi_data)
        return midi_data

    def play_with_loop(self, midi_data):
        self.is_playing = True
        midi_file = MIDI.load(io.BytesIO(base64.b64decode(midi_data)))
        while self.is_playing:
            self.synthesizer.play_midi(midi_file)

    def stop_playback(self):
        self.is_playing = False
        return "Playback stopped"

def softmax(x, axis):
    x_max = np.max(x, axis=axis, keepdims=True)
    exp_x_shifted = np.exp(x - x_max)
    return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)

def sample_top_p_k(probs, p, k, generator=None):
    if generator is None:
        generator = np.random
    probs_idx = np.argsort(-probs, axis=-1)
    probs_sort = np.take_along_axis(probs, probs_idx, -1)
    probs_sum = np.cumsum(probs_sort, axis=-1)
    mask = probs_sum - probs_sort > p
    probs_sort[mask] = 0.0
    mask = np.zeros(probs_sort.shape[-1])
    mask[:k] = 1
    probs_sort *= mask
    probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
    shape = probs_sort.shape
    probs_sort_flat = probs_sort.reshape(-1, shape[-1])
    probs_idx_flat = probs_idx.reshape(-1, shape[-1])
    next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
    return next_token.reshape(*shape[:-1])

def create_download_list():
    html = "<h3>Downloads</h3><ul>"
    for i, midi_data in enumerate(midi_processor.modified_files):
        html += f'<li><a href="data:audio/midi;base64,{midi_data}" download="midi_{i}.mid">MIDI {i}</a></li>'
    html += "</ul>"
    return html

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--port", type=int, default=7860)
    parser.add_argument("--share", action="store_true")
    opt = parser.parse_args()

    midi_manager = MIDIDeviceManager()
    midi_processor = MIDIManager()

    with gr.Blocks(theme=gr.themes.Soft()) as app:
        gr.Markdown("<h1>🎵 MIDI Composer 🎵</h1>")
        
        with gr.Tabs():
            # Tab 1: MIDI Prompt (Main Tab)
            with gr.Tab("MIDI Prompt"):
                midi_upload = gr.File(label="Upload MIDI File", file_count="multiple")
                output = gr.Audio(label="Generated MIDI", type="bytes", autoplay=True)
                status = gr.Textbox(label="Status", value="Ready", interactive=False)
                
                def process_midi(files):
                    if not files:
                        return None, "No file uploaded"
                    midi_data = None
                    for file in files:
                        midi_id = midi_processor.load_midi(file.name)
                        # Use ONNX generation for advanced synthesis
                        midi_data = midi_processor.generate_onnx(midi_id, max_len=1024)
                        midi_processor.play_with_loop(midi_data)
                    return io.BytesIO(base64.b64decode(midi_data)), "Playing", create_download_list()
                
                midi_upload.change(process_midi, inputs=[midi_upload], 
                                 outputs=[output, status, "downloads"])

            # Tab 2: Downloads
            with gr.Tab("Downloads", elem_id="downloads"):
                downloads = gr.HTML(value="No generated files yet")

            # Tab 3: Devices
            with gr.Tab("Devices"):
                device_info = gr.Textbox(label="Connected MIDI Devices", value=midi_manager.get_device_info(), interactive=False)
                refresh_btn = gr.Button("Refresh Devices")
                stop_btn = gr.Button("Stop Playback")
                
                def refresh_devices():
                    return midi_manager.get_device_info()
                
                refresh_btn.click(refresh_devices, inputs=None, outputs=[device_info])
                stop_btn.click(midi_processor.stop_playback, inputs=None, outputs=[status])

        gr.Markdown("""
        <div style='text-align: center; margin-top: 20px;'>
            <img src='https://huggingface.co/front/assets/huggingface_logo-noborder.svg' alt='Hugging Face Logo' style='width: 50px;'><br>
            <strong>Hugging Face</strong><br>
            <a href='https://huggingface.co/models'>Models</a> |
            <a href='https://huggingface.co/datasets'>Datasets</a> |
            <a href='https://huggingface.co/spaces'>Spaces</a> |
            <a href='https://huggingface.co/posts'>Posts</a> |
            <a href='https://huggingface.co/docs'>Docs</a> |
            <a href='https://huggingface.co/enterprise'>Enterprise</a> |
            <a href='https://huggingface.co/pricing'>Pricing</a>
        </div>
        """)

    app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True)
    midi_manager.close()