Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,003 Bytes
92acab8 e8f8f3c 75808a5 e8f8f3c 92acab8 75808a5 92acab8 75808a5 dbc6fc5 75808a5 92acab8 e8f8f3c 92acab8 b50d4ec e8f8f3c b50d4ec e8f8f3c b50d4ec 92acab8 75808a5 92acab8 75808a5 dbc6fc5 92acab8 75808a5 784b974 dbc6fc5 92acab8 b50d4ec 92acab8 b50d4ec 92acab8 b50d4ec 92acab8 75808a5 92acab8 75808a5 784b974 b50d4ec 92acab8 75808a5 92acab8 dbc6fc5 92acab8 b50d4ec 92acab8 e8f8f3c 75808a5 92acab8 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 92acab8 75808a5 dbc6fc5 75808a5 92acab8 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c 75808a5 e8f8f3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import random
import argparse
import os
import glob
import json
import rtmidi
import gradio as gr
import numpy as np
import onnxruntime as rt
from huggingface_hub import hf_hub_download
import MIDI
from midi_synthesizer import MidiSynthesizer
from midi_tokenizer import MIDITokenizer
MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"
class MIDIDeviceManager:
def __init__(self):
self.midiout = rtmidi.MidiOut()
self.midiin = rtmidi.MidiIn()
def get_output_devices(self):
return self.midiout.get_ports() or ["No MIDI output devices"]
def get_input_devices(self):
return self.midiin.get_ports() or ["No MIDI input devices"]
def get_device_info(self):
out_devices = self.get_output_devices()
in_devices = self.get_input_devices()
out_info = "\n".join([f"Out Port {i}: {name}" for i, name in enumerate(out_devices)]) if out_devices else "No MIDI output devices detected"
in_info = "\n".join([f"In Port {i}: {name}" for i, name in enumerate(in_devices)]) if in_devices else "No MIDI input devices detected"
return f"Output Devices:\n{out_info}\n\nInput Devices:\n{in_info}"
def close(self):
if self.midiout.is_port_open():
self.midiout.close_port()
if self.midiin.is_port_open():
self.midiin.close_port()
del self.midiout
del self.midiin
class MIDIManager:
def __init__(self):
self.soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
self.synthesizer = MidiSynthesizer(self.soundfont_path)
self.loaded_midi = {}
self.modified_files = []
self.is_playing = False
self.tokenizer = self.load_tokenizer("skytnt/midi-model")
self.model_base = rt.InferenceSession(hf_hub_download(repo_id="skytnt/midi-model", filename="onnx/model_base.onnx"), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.model_token = rt.InferenceSession(hf_hub_download(repo_id="skytnt/midi-model", filename="onnx/model_token.onnx"), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
def load_tokenizer(self, repo_id):
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
with open(config_path, "r") as f:
config = json.load(f)
tokenizer = MIDITokenizer(config["tokenizer"]["version"])
tokenizer.set_optimise_midi(config["tokenizer"]["optimise_midi"])
return tokenizer
def load_midi(self, file_path):
midi = MIDI.load(file_path)
midi_id = f"midi_{len(self.loaded_midi)}"
self.loaded_midi[midi_id] = (file_path, midi)
return midi_id
def extract_notes_and_instruments(self, midi):
notes = []
instruments = set()
for track in midi.tracks:
for event in track.events:
if event.type == 'note_on' and event.velocity > 0:
notes.append((event.note, event.velocity, event.time))
if hasattr(event, 'program'):
instruments.add(event.program)
return notes, list(instruments)
def generate_variation(self, midi_id, length_factor=10, variation=0.3):
if midi_id not in self.loaded_midi:
return None
_, midi = self.loaded_midi[midi_id]
notes, instruments = self.extract_notes_and_instruments(midi)
new_notes = []
for _ in range(int(length_factor)): # Max length: 10x repetition
for note, vel, time in notes:
if random.random() < variation:
new_note = min(127, max(0, note + random.randint(-2, 2)))
new_vel = min(127, max(0, vel + random.randint(-10, 10)))
new_notes.append((new_note, new_vel, time))
else:
new_notes.append((note, vel, time))
new_midi = MIDI.MIDIFile(len(instruments) or 1)
for i, inst in enumerate(instruments or [0]):
new_midi.addTrack()
new_midi.addProgramChange(i, 0, 0, inst)
for note, vel, time in new_notes:
new_midi.addNote(i, 0, note, time, 100, vel)
midi_output = io.BytesIO()
new_midi.writeFile(midi_output)
midi_data = base64.b64encode(midi_output.getvalue()).decode('utf-8')
self.modified_files.append(midi_data)
return midi_data
def generate_onnx(self, midi_id, max_len=1024, temp=1.0, top_p=0.98, top_k=20):
if midi_id not in self.loaded_midi:
return None
_, mid = self.loaded_midi[midi_id]
mid_seq = self.tokenizer.tokenize(MIDI.midi2score(mid))
mid = np.asarray([mid_seq], dtype=np.int64)
generator = np.random.RandomState(random.randint(0, MAX_SEED))
# Simplified ONNX generation from app_onnx.py
input_tensor = mid
cur_len = input_tensor.shape[1]
model = [self.model_base, self.model_token, self.tokenizer]
while cur_len < max_len:
inputs = {"x": rt.OrtValue.ortvalue_from_numpy(input_tensor[:, -1:], device_type="cuda")}
outputs = {"hidden": rt.OrtValue.ortvalue_from_shape_and_type((1, 1, 1024), np.float32, device_type="cuda")}
io_binding = model[0].io_binding()
for name, val in inputs.items():
io_binding.bind_ortvalue_input(name, val)
for name in outputs:
io_binding.bind_ortvalue_output(name, outputs[name])
model[0].run_with_iobinding(io_binding)
hidden = outputs["hidden"].numpy()[:, -1:]
logits = model[1].run(None, {"hidden": hidden})[0]
scores = softmax(logits / temp, -1)
next_token = sample_top_p_k(scores, top_p, top_k, generator)
input_tensor = np.concatenate([input_tensor, next_token], axis=1)
cur_len += 1
mid_seq = input_tensor.tolist()[0]
new_midi = self.tokenizer.detokenize(mid_seq)
midi_output = io.BytesIO()
MIDI.score2midi(new_midi, midi_output)
midi_data = base64.b64encode(midi_output.getvalue()).decode('utf-8')
self.modified_files.append(midi_data)
return midi_data
def play_with_loop(self, midi_data):
self.is_playing = True
midi_file = MIDI.load(io.BytesIO(base64.b64decode(midi_data)))
while self.is_playing:
self.synthesizer.play_midi(midi_file)
def stop_playback(self):
self.is_playing = False
return "Playback stopped"
def softmax(x, axis):
x_max = np.max(x, axis=axis, keepdims=True)
exp_x_shifted = np.exp(x - x_max)
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
def sample_top_p_k(probs, p, k, generator=None):
if generator is None:
generator = np.random
probs_idx = np.argsort(-probs, axis=-1)
probs_sort = np.take_along_axis(probs, probs_idx, -1)
probs_sum = np.cumsum(probs_sort, axis=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
mask = np.zeros(probs_sort.shape[-1])
mask[:k] = 1
probs_sort *= mask
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
shape = probs_sort.shape
probs_sort_flat = probs_sort.reshape(-1, shape[-1])
probs_idx_flat = probs_idx.reshape(-1, shape[-1])
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
return next_token.reshape(*shape[:-1])
def create_download_list():
html = "<h3>Downloads</h3><ul>"
for i, midi_data in enumerate(midi_processor.modified_files):
html += f'<li><a href="data:audio/midi;base64,{midi_data}" download="midi_{i}.mid">MIDI {i}</a></li>'
html += "</ul>"
return html
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--share", action="store_true")
opt = parser.parse_args()
midi_manager = MIDIDeviceManager()
midi_processor = MIDIManager()
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("<h1>🎵 MIDI Composer 🎵</h1>")
with gr.Tabs():
# Tab 1: MIDI Prompt (Main Tab)
with gr.Tab("MIDI Prompt"):
midi_upload = gr.File(label="Upload MIDI File", file_count="multiple")
output = gr.Audio(label="Generated MIDI", type="bytes", autoplay=True)
status = gr.Textbox(label="Status", value="Ready", interactive=False)
def process_midi(files):
if not files:
return None, "No file uploaded"
midi_data = None
for file in files:
midi_id = midi_processor.load_midi(file.name)
# Use ONNX generation for advanced synthesis
midi_data = midi_processor.generate_onnx(midi_id, max_len=1024)
midi_processor.play_with_loop(midi_data)
return io.BytesIO(base64.b64decode(midi_data)), "Playing", create_download_list()
midi_upload.change(process_midi, inputs=[midi_upload],
outputs=[output, status, "downloads"])
# Tab 2: Downloads
with gr.Tab("Downloads", elem_id="downloads"):
downloads = gr.HTML(value="No generated files yet")
# Tab 3: Devices
with gr.Tab("Devices"):
device_info = gr.Textbox(label="Connected MIDI Devices", value=midi_manager.get_device_info(), interactive=False)
refresh_btn = gr.Button("Refresh Devices")
stop_btn = gr.Button("Stop Playback")
def refresh_devices():
return midi_manager.get_device_info()
refresh_btn.click(refresh_devices, inputs=None, outputs=[device_info])
stop_btn.click(midi_processor.stop_playback, inputs=None, outputs=[status])
gr.Markdown("""
<div style='text-align: center; margin-top: 20px;'>
<img src='https://huggingface.co/front/assets/huggingface_logo-noborder.svg' alt='Hugging Face Logo' style='width: 50px;'><br>
<strong>Hugging Face</strong><br>
<a href='https://huggingface.co/models'>Models</a> |
<a href='https://huggingface.co/datasets'>Datasets</a> |
<a href='https://huggingface.co/spaces'>Spaces</a> |
<a href='https://huggingface.co/posts'>Posts</a> |
<a href='https://huggingface.co/docs'>Docs</a> |
<a href='https://huggingface.co/enterprise'>Enterprise</a> |
<a href='https://huggingface.co/pricing'>Pricing</a>
</div>
""")
app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True)
midi_manager.close() |