Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from PyPDF2 import PdfReader, PdfWriter
|
|
10 |
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, RecognizerResult
|
11 |
from presidio_anonymizer import AnonymizerEngine
|
12 |
from presidio_anonymizer.entities import OperatorConfig
|
|
|
13 |
|
14 |
st.set_page_config(page_title="Presidio PHI De-identification", layout="wide", initial_sidebar_state="expanded", menu_items={"About": "https://microsoft.github.io/presidio/"})
|
15 |
dotenv.load_dotenv()
|
@@ -44,14 +45,10 @@ def analyzer_engine(model_family: str, model_path: str) -> AnalyzerEngine:
|
|
44 |
|
45 |
def get_supported_entities(model_family: str, model_path: str) -> list[str]:
|
46 |
"""📋 Lists what secrets we’re hunting—PHI beware!"""
|
47 |
-
if model_family.lower() == "huggingface"
|
48 |
-
return ["PERSON", "LOCATION", "ORGANIZATION", "DATE_TIME"]
|
49 |
-
elif model_family.lower() == "flair":
|
50 |
-
return ["PERSON", "LOCATION", "ORGANIZATION"]
|
51 |
-
return ["PERSON", "LOCATION", "ORGANIZATION"]
|
52 |
|
53 |
# Feature Spotlight: 🕵️♂️ The Great PHI Hunt Begins!
|
54 |
-
#
|
55 |
|
56 |
def analyze(analyzer: AnalyzerEngine, text: str, entities: list[str], language: str, score_threshold: float, return_decision_process: bool, allow_list: list[str], deny_list: list[str]) -> list[RecognizerResult]:
|
57 |
"""🦸 Swoops in to spot PHI with laser precision!"""
|
@@ -80,14 +77,15 @@ def create_ad_hoc_deny_list_recognizer(deny_list: list[str] = None) -> PatternRe
|
|
80 |
return PatternRecognizer(supported_entity="GENERIC_PII", deny_list=deny_list)
|
81 |
|
82 |
def save_pdf(pdf_input) -> str:
|
83 |
-
"""💾 Drops PDFs
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
|
89 |
# Feature Spotlight: 📄 PDF Magic Unleashed!
|
90 |
-
#
|
91 |
|
92 |
def read_pdf(pdf_path: str) -> str:
|
93 |
"""📖 Slurps up PDF text like a thirsty camel!"""
|
@@ -111,13 +109,13 @@ model_list = [
|
|
111 |
("HuggingFace/obi/deid_roberta_i2b2", "https://huggingface.co/obi/deid_roberta_i2b2"),
|
112 |
("HuggingFace/StanfordAIMI/stanford-deidentifier-base", "https://huggingface.co/StanfordAIMI/stanford-deidentifier-base"),
|
113 |
]
|
114 |
-
st_model = st.sidebar.selectbox("NER model package", [
|
115 |
-
st.sidebar.markdown(f"[View model on HuggingFace]({next(url for
|
116 |
st_model_package = st_model.split("/")[0]
|
117 |
st_model = st_model if st_model_package.lower() != "huggingface" else "/".join(st_model.split("/")[1:])
|
118 |
analyzer_params = (st_model_package, st_model)
|
119 |
st.sidebar.warning("Models may take a sec to wake up!")
|
120 |
-
st_operator = st.sidebar.selectbox("De-identification approach", ["replace", "redact", "mask"],
|
121 |
st_threshold = st.sidebar.slider("Acceptance threshold", 0.0, 1.0, 0.35)
|
122 |
st_return_decision_process = st.sidebar.checkbox("Add analysis explanations", False)
|
123 |
with st.sidebar.expander("Allowlists and denylists"):
|
@@ -132,8 +130,6 @@ with col1:
|
|
132 |
if uploaded_file:
|
133 |
try:
|
134 |
pdf_path = save_pdf(uploaded_file)
|
135 |
-
if not pdf_path:
|
136 |
-
raise ValueError("PDF save flopped!")
|
137 |
text = read_pdf(pdf_path)
|
138 |
if not text:
|
139 |
raise ValueError("No text in that PDF!")
|
@@ -157,8 +153,6 @@ with col1:
|
|
157 |
timestamp = get_timestamp_prefix()
|
158 |
output_filename = f"{timestamp}_{uploaded_file.name}"
|
159 |
pdf_output = create_pdf(anonymized_result.text, pdf_path, output_filename)
|
160 |
-
if not pdf_output:
|
161 |
-
raise ValueError("PDF creation tanked!")
|
162 |
with open(output_filename, "rb") as f:
|
163 |
pdf_bytes = f.read()
|
164 |
b64 = base64.b64encode(pdf_bytes).decode()
|
|
|
10 |
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, RecognizerResult
|
11 |
from presidio_anonymizer import AnonymizerEngine
|
12 |
from presidio_anonymizer.entities import OperatorConfig
|
13 |
+
import tempfile
|
14 |
|
15 |
st.set_page_config(page_title="Presidio PHI De-identification", layout="wide", initial_sidebar_state="expanded", menu_items={"About": "https://microsoft.github.io/presidio/"})
|
16 |
dotenv.load_dotenv()
|
|
|
45 |
|
46 |
def get_supported_entities(model_family: str, model_path: str) -> list[str]:
|
47 |
"""📋 Lists what secrets we’re hunting—PHI beware!"""
|
48 |
+
return ["PERSON", "LOCATION", "ORGANIZATION", "DATE_TIME"] if model_family.lower() == "huggingface" else ["PERSON", "LOCATION", "ORGANIZATION"]
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Feature Spotlight: 🕵️♂️ The Great PHI Hunt Begins!
|
51 |
+
# Summon models to sniff out sensitive data in PDFs with ninja stealth! 😎
|
52 |
|
53 |
def analyze(analyzer: AnalyzerEngine, text: str, entities: list[str], language: str, score_threshold: float, return_decision_process: bool, allow_list: list[str], deny_list: list[str]) -> list[RecognizerResult]:
|
54 |
"""🦸 Swoops in to spot PHI with laser precision!"""
|
|
|
77 |
return PatternRecognizer(supported_entity="GENERIC_PII", deny_list=deny_list)
|
78 |
|
79 |
def save_pdf(pdf_input) -> str:
|
80 |
+
"""💾 Drops PDFs into a cozy temp hideout!"""
|
81 |
+
if pdf_input.size > 200 * 1024 * 1024:
|
82 |
+
raise ValueError("PDF exceeds 200MB limit")
|
83 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf", dir="/tmp") as tmp:
|
84 |
+
tmp.write(pdf_input.read())
|
85 |
+
return tmp.name
|
86 |
|
87 |
# Feature Spotlight: 📄 PDF Magic Unleashed!
|
88 |
+
# Zap PHI from PDFs and sling back a shiny, safe file with timestamp swagger! ✨
|
89 |
|
90 |
def read_pdf(pdf_path: str) -> str:
|
91 |
"""📖 Slurps up PDF text like a thirsty camel!"""
|
|
|
109 |
("HuggingFace/obi/deid_roberta_i2b2", "https://huggingface.co/obi/deid_roberta_i2b2"),
|
110 |
("HuggingFace/StanfordAIMI/stanford-deidentifier-base", "https://huggingface.co/StanfordAIMI/stanford-deidentifier-base"),
|
111 |
]
|
112 |
+
st_model = st.sidebar.selectbox("NER model package", [m[0] for m in model_list], 0, help="Pick your PHI-hunting hero!")
|
113 |
+
st.sidebar.markdown(f"[View model on HuggingFace]({next(url for m, url in model_list if m == st_model)})")
|
114 |
st_model_package = st_model.split("/")[0]
|
115 |
st_model = st_model if st_model_package.lower() != "huggingface" else "/".join(st_model.split("/")[1:])
|
116 |
analyzer_params = (st_model_package, st_model)
|
117 |
st.sidebar.warning("Models may take a sec to wake up!")
|
118 |
+
st_operator = st.sidebar.selectbox("De-identification approach", ["replace", "redact", "mask"], 0, help="Choose how to zap PHI!")
|
119 |
st_threshold = st.sidebar.slider("Acceptance threshold", 0.0, 1.0, 0.35)
|
120 |
st_return_decision_process = st.sidebar.checkbox("Add analysis explanations", False)
|
121 |
with st.sidebar.expander("Allowlists and denylists"):
|
|
|
130 |
if uploaded_file:
|
131 |
try:
|
132 |
pdf_path = save_pdf(uploaded_file)
|
|
|
|
|
133 |
text = read_pdf(pdf_path)
|
134 |
if not text:
|
135 |
raise ValueError("No text in that PDF!")
|
|
|
153 |
timestamp = get_timestamp_prefix()
|
154 |
output_filename = f"{timestamp}_{uploaded_file.name}"
|
155 |
pdf_output = create_pdf(anonymized_result.text, pdf_path, output_filename)
|
|
|
|
|
156 |
with open(output_filename, "rb") as f:
|
157 |
pdf_bytes = f.read()
|
158 |
b64 = base64.b64encode(pdf_bytes).decode()
|