File size: 2,632 Bytes
25fcb65
36e1b68
412c852
36e1b68
 
 
922cd73
36e1b68
793e132
36e1b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7770adb
36e1b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7226ea6
36e1b68
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from transformers import pipeline
import torch
import gradio as gr
import subprocess
import numpy as np
import time

p = pipeline("automatic-speech-recognition", model="aware-ai/wav2vec2-base-german")

model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
                              model='silero_vad', force_reload=False, onnx=True)
                              
def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
    """
    Helper function to read an audio file through ffmpeg.
    """
    ar = f"{sampling_rate}"
    ac = "1"
    format_for_conversion = "f32le"
    ffmpeg_command = [
        "ffmpeg",
        "-i",
        "pipe:0",
        "-ac",
        ac,
        "-ar",
        ar,
        "-f",
        format_for_conversion,
        "-hide_banner",
        "-loglevel",
        "quiet",
        "pipe:1",
    ]

    try:
        with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process:
            output_stream = ffmpeg_process.communicate(bpayload)
    except FileNotFoundError as error:
        raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error
    out_bytes = output_stream[0]
    audio = np.frombuffer(out_bytes, np.float32)
    if audio.shape[0] == 0:
        raise ValueError("Malformed soundfile")
    return audio

(get_speech_timestamps,
 _, read_audio,
 *_) = utils

def is_speech(wav, sr):
    speech_timestamps = get_speech_timestamps(wav, model,
                                    sampling_rate=sr)

    return len(speech_timestamps) > 0

def transcribe(audio, state={"text": "", "temp_text": "", "audio": ""}):
    if state is None:
        state={"text": "", "temp_text": "", "audio": ""}
    with open(audio, "rb") as f:
            payload = f.read()
    audio = ffmpeg_read(payload, sampling_rate=16000)   
    _sr = 16000
     
    speech = is_speech(wav_data, _sr)
    if(speech):
        if(state["audio"] is ""):
            state["audio"] = wav_data
        else:
            state["audio"] = np.concatenate((state["audio"], wav_data))
    else:
        if(state["audio"] is not ""):
            text = p(state["audio"])["text"] + "\n"
            state["temp_text"] = text
        
        state["text"] += state["temp_text"]
        state["temp_text"] = ""
        state["audio"] = ""

    time.sleep(0.5)
    return f'{state["text"]} ( {state["temp_text"]} )', state

gr.Interface(
    transcribe, 
    [gr.Audio(source="microphone", type="filepath", streaming=True), "state"],
    
    [gr.Textbox(),"state"],
    live=True
    ).launch(server_name = "0.0.0.0")