aweber commited on
Commit
9e5baf4
·
verified ·
1 Parent(s): 9685f7b

Update audio.py

Browse files
Files changed (1) hide show
  1. tasks/audio.py +10 -3
tasks/audio.py CHANGED
@@ -4,6 +4,7 @@ from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score
5
  import random
6
  import os
 
7
 
8
  from .utils.evaluation import AudioEvaluationRequest
9
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
@@ -13,7 +14,7 @@ load_dotenv()
13
 
14
  router = APIRouter()
15
 
16
- DESCRIPTION = "Random Baseline"
17
  ROUTE = "/audio"
18
 
19
 
@@ -54,8 +55,14 @@ async def evaluate_audio(request: AudioEvaluationRequest):
54
  #--------------------------------------------------------------------------------------------
55
 
56
  # Make random predictions (placeholder for actual model inference)
57
- true_labels = test_dataset["label"]
58
- predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
 
 
 
 
 
 
59
 
60
  #--------------------------------------------------------------------------------------------
61
  # YOUR MODEL INFERENCE STOPS HERE
 
4
  from sklearn.metrics import accuracy_score
5
  import random
6
  import os
7
+ import joblib
8
 
9
  from .utils.evaluation import AudioEvaluationRequest
10
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
 
14
 
15
  router = APIRouter()
16
 
17
+ DESCRIPTION = "Random Forest"
18
  ROUTE = "/audio"
19
 
20
 
 
55
  #--------------------------------------------------------------------------------------------
56
 
57
  # Make random predictions (placeholder for actual model inference)
58
+ true_labels = np.array(test_dataset["label"])
59
+
60
+ # Extract audio samples from test_dataset
61
+ x_test = [sample["audio"]["array"] for sample in test_dataset]
62
+
63
+ clf = joblib.load()
64
+ predictions = clf.predict(x_test)
65
+
66
 
67
  #--------------------------------------------------------------------------------------------
68
  # YOUR MODEL INFERENCE STOPS HERE