Update audio.py
Browse files- tasks/audio.py +10 -3
tasks/audio.py
CHANGED
@@ -4,6 +4,7 @@ from datasets import load_dataset
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
import os
|
|
|
7 |
|
8 |
from .utils.evaluation import AudioEvaluationRequest
|
9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
@@ -13,7 +14,7 @@ load_dotenv()
|
|
13 |
|
14 |
router = APIRouter()
|
15 |
|
16 |
-
DESCRIPTION = "Random
|
17 |
ROUTE = "/audio"
|
18 |
|
19 |
|
@@ -54,8 +55,14 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
54 |
#--------------------------------------------------------------------------------------------
|
55 |
|
56 |
# Make random predictions (placeholder for actual model inference)
|
57 |
-
true_labels = test_dataset["label"]
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
#--------------------------------------------------------------------------------------------
|
61 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
import os
|
7 |
+
import joblib
|
8 |
|
9 |
from .utils.evaluation import AudioEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
14 |
|
15 |
router = APIRouter()
|
16 |
|
17 |
+
DESCRIPTION = "Random Forest"
|
18 |
ROUTE = "/audio"
|
19 |
|
20 |
|
|
|
55 |
#--------------------------------------------------------------------------------------------
|
56 |
|
57 |
# Make random predictions (placeholder for actual model inference)
|
58 |
+
true_labels = np.array(test_dataset["label"])
|
59 |
+
|
60 |
+
# Extract audio samples from test_dataset
|
61 |
+
x_test = [sample["audio"]["array"] for sample in test_dataset]
|
62 |
+
|
63 |
+
clf = joblib.load()
|
64 |
+
predictions = clf.predict(x_test)
|
65 |
+
|
66 |
|
67 |
#--------------------------------------------------------------------------------------------
|
68 |
# YOUR MODEL INFERENCE STOPS HERE
|