aweber commited on
Commit
d47a449
·
verified ·
1 Parent(s): 19550e4

Update tasks/audio.py

Browse files
Files changed (1) hide show
  1. tasks/audio.py +5 -3
tasks/audio.py CHANGED
@@ -10,7 +10,7 @@ import numpy as np
10
  import scipy
11
 
12
  from sklearn.preprocessing import StandardScaler
13
- from .fourier import FourierPreprocessor, Fourier
14
 
15
  from .utils.evaluation import AudioEvaluationRequest
16
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
@@ -22,7 +22,8 @@ router = APIRouter()
22
 
23
  DESCRIPTION = "Random Forest"
24
  ROUTE = "/audio"
25
- MODEL_PATH = Path(__file__).parent / "audio_models" / "RandomForestClassifier_withScaler.pkl"
 
26
  # MODEL_PATH = Path(__file__).parent / "audio_models" / "RandomForestClassifier_withScaler_cloudpickle.pkl"
27
 
28
 
@@ -64,13 +65,14 @@ async def evaluate_audio(request: AudioEvaluationRequest):
64
 
65
  # Extract audio samples from test_dataset
66
  x_test = [sample["audio"]["array"] for sample in test_dataset]
 
67
 
68
  clf = joblib.load(MODEL_PATH)
69
 
70
  # with open(MODEL_PATH, 'rb') as f:
71
  # clf = pickle.load(f)
72
 
73
- predictions = clf.predict(x_test)
74
 
75
  # --------------------------------------------------------------------------------------------
76
  # YOUR MODEL INFERENCE STOPS HERE
 
10
  import scipy
11
 
12
  from sklearn.preprocessing import StandardScaler
13
+ from .fourier import FourierPreprocessor
14
 
15
  from .utils.evaluation import AudioEvaluationRequest
16
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
 
22
 
23
  DESCRIPTION = "Random Forest"
24
  ROUTE = "/audio"
25
+ # MODEL_PATH = Path(__file__).parent / "audio_models" / "RandomForestClassifier_withScaler.pkl"
26
+ MODEL_PATH = Path(__file__).parent / "audio_models" / "RandomForestClassifier_withScaler_rawData.pkl"
27
  # MODEL_PATH = Path(__file__).parent / "audio_models" / "RandomForestClassifier_withScaler_cloudpickle.pkl"
28
 
29
 
 
65
 
66
  # Extract audio samples from test_dataset
67
  x_test = [sample["audio"]["array"] for sample in test_dataset]
68
+ x_test_preprocessed = FourierPreprocessor().transform(x_test)
69
 
70
  clf = joblib.load(MODEL_PATH)
71
 
72
  # with open(MODEL_PATH, 'rb') as f:
73
  # clf = pickle.load(f)
74
 
75
+ predictions = clf.predict(x_test_preprocessed)
76
 
77
  # --------------------------------------------------------------------------------------------
78
  # YOUR MODEL INFERENCE STOPS HERE