Spaces:
Build error
Build error
File size: 28,483 Bytes
1207342 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import argparse
import os
from pathlib import Path
import gradio as gr
#import torch
from functions.core_functions1 import clear_gpu_cache, load_model, run_tts, load_params_tts, process_srt_and_generate_audio, convert_voice
# preprocess_dataset, load_params, train_model, optimize_model,
from functions.logging_utils import remove_log_file, read_logs
from functions.slice_utils import open_slice, close_slice, kill_process
from utils.formatter import format_audio_list
from utils.gpt_train import train_gpt
import traceback
import shutil
from tools.i18n.i18n import I18nAuto
from tools import my_utils
from multiprocessing import cpu_count
from subprocess import Popen
from config import python_exec, is_share, webui_port_main
if __name__ == "__main__":
# 清除旧的日志文件
remove_log_file("logs/main.log")
parser = argparse.ArgumentParser(
description="""XTTS fine-tuning demo\n\n"""
"""
Example runs:
python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--port",
type=int,
help="Port to run the gradio demo. Default: 5003",
default=5003,
)
parser.add_argument(
"--out_path",
type=str,
help="Output path (where data and checkpoints will be saved) Default: output/",
default=str(Path.cwd() / "finetune_models"),
)
parser.add_argument(
"--num_epochs",
type=int,
help="Number of epochs to train. Default: 6",
default=6,
)
parser.add_argument(
"--batch_size",
type=int,
help="Batch size. Default: 2",
default=2,
)
parser.add_argument(
"--grad_acumm",
type=int,
help="Grad accumulation steps. Default: 1",
default=1,
)
parser.add_argument(
"--max_audio_length",
type=int,
help="Max permitted audio size in seconds. Default: 11",
default=11,
)
args = parser.parse_args()
i18n = I18nAuto()
n_cpu=cpu_count()
'''
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False
'''
with gr.Blocks() as demo:
with gr.Tab("0 - Audio Slicing"):
gr.Markdown(value=i18n("0b-语音切分工具"))
with gr.Row():
slice_inp_path = gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"), value="")
slice_opt_root = gr.Textbox(label=i18n("切分后的子音频的输出根目录"), value="output/slicer_opt")
threshold = gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"), value="-34")
min_length = gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"), value="4000")
min_interval = gr.Textbox(label=i18n("min_interval:最短切割间隔"), value="300")
hop_size = gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"), value="10")
max_sil_kept = gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"), value="500")
with gr.Row():
open_slicer_button = gr.Button(i18n("开启语音切割"), variant="primary", visible=True)
close_slicer_button = gr.Button(i18n("终止语音切割"), variant="primary", visible=False)
_max = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("max:归一化后最大值多少"), value=0.9, interactive=True)
alpha = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("alpha_mix:混多少比例归一化后音频进来"), value=0.25, interactive=True)
n_process = gr.Slider(minimum=1, maximum=n_cpu, step=1, label=i18n("切割使用的进程数"), value=4, interactive=True)
slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
open_slicer_button.click(open_slice, [slice_inp_path, slice_opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_process], [slicer_info, open_slicer_button, close_slicer_button])
close_slicer_button.click(close_slice, [], [slicer_info, open_slicer_button, close_slicer_button])
with gr.Tab("1 - Data processing"):
out_path = gr.Textbox(label="Output path (where data and checkpoints will be saved):", value=args.out_path)
upload_file = gr.File(file_count="multiple", label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)")
folder_path = gr.Textbox(label="Or input the path of a folder containing audio files")
whisper_model = gr.Dropdown(label="Whisper Model", value="large-v3", choices=["large-v3", "large-v2", "large", "medium", "small"])
lang = gr.Dropdown(label="Dataset Language", value="en", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh", "hu", "ko", "ja"])
progress_data = gr.Label(label="Progress:")
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")
def get_audio_files_from_folder(folder_path):
audio_files = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith(".wav") or file.endswith(".mp3") or file.endswith(".flac") or file.endswith(".m4a") or file.endswith(".webm"):
audio_files.append(os.path.join(root, file))
return audio_files
def preprocess_dataset(audio_path, audio_folder, language, whisper_model, out_path, train_csv, eval_csv, progress=gr.Progress(track_tqdm=True)):
clear_gpu_cache()
train_csv = ""
eval_csv = ""
out_path = os.path.join(out_path, "dataset")
os.makedirs(out_path, exist_ok=True)
# 检测输入是单个文件、多个文件还是文件夹
if audio_path is not None and audio_path != []:
# 处理单个文件或多个文件
try:
train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, whisper_model=whisper_model, target_language=language, out_path=out_path, gradio_progress=progress)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The data processing was interrupted due to an error! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
elif audio_folder is not None:
# 处理文件夹
audio_files = get_audio_files_from_folder(audio_folder)
try:
train_meta, eval_meta, audio_total_size = format_audio_list(audio_files, whisper_model=whisper_model, target_language=language, out_path=out_path, gradio_progress=progress)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The data processing was interrupted due to an error! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
else:
return "You should provide either audio files or a folder containing audio files!", "", ""
# if audio total len is less than 2 minutes raise an error
if audio_total_size < 120:
message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
print(message)
return message, "", ""
print("Dataset Processed!")
return "Dataset Processed!", train_meta, eval_meta
#prompt_compute_btn.click(preprocess_dataset, inputs=[upload_file, upload_folder, lang, whisper_model, out_path, train_csv, eval_csv], outputs=[progress_data, train_csv, eval_csv])
'''
def preprocess_dataset(audio_path, language, whisper_model, out_path,train_csv,eval_csv, progress=gr.Progress(track_tqdm=True)):
clear_gpu_cache()
train_csv = ""
eval_csv = ""
out_path = os.path.join(out_path, "dataset")
os.makedirs(out_path, exist_ok=True)
if audio_path is None:
return "You should provide one or multiple audio files! If you provided it, probably the upload of the files is not finished yet!", "", ""
else:
try:
train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, whisper_model = whisper_model, target_language=language, out_path=out_path, gradio_progress=progress)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
# clear_gpu_cache()
# if audio total len is less than 2 minutes raise an error
if audio_total_size < 120:
message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
print(message)
return message, "", ""
print("Dataset Processed!")
return "Dataset Processed!", train_meta, eval_meta
'''
with gr.Tab("2 - Fine-tuning XTTS Encoder"):
load_params_btn = gr.Button(value="Load Params from output folder")
version = gr.Dropdown(
label="XTTS base version",
value="v2.0.2",
choices=[
"v2.0.3",
"v2.0.2",
"v2.0.1",
"v2.0.0",
"main"
],
)
train_csv = gr.Textbox(
label="Train CSV:",
)
eval_csv = gr.Textbox(
label="Eval CSV:",
)
custom_model = gr.Textbox(
label="(Optional) Custom model.pth file , leave blank if you want to use the base file.",
value="",
)
num_epochs = gr.Slider(
label="Number of epochs:",
minimum=1,
maximum=100,
step=1,
value=args.num_epochs,
)
batch_size = gr.Slider(
label="Batch size:",
minimum=2,
maximum=512,
step=1,
value=args.batch_size,
)
grad_acumm = gr.Slider(
label="Grad accumulation steps:",
minimum=2,
maximum=128,
step=1,
value=args.grad_acumm,
)
max_audio_length = gr.Slider(
label="Max permitted audio size in seconds:",
minimum=2,
maximum=20,
step=1,
value=args.max_audio_length,
)
clear_train_data = gr.Dropdown(
label="Clear train data, you will delete selected folder, after optimizing",
value="run",
choices=[
"none",
"run",
"dataset",
"all"
])
progress_train = gr.Label(
label="Progress:"
)
# demo.load(read_logs, None, logs_tts_train, every=1)
train_btn = gr.Button(value="Step 2 - Run the training")
optimize_model_btn = gr.Button(value="Step 2.5 - Optimize the model")
def train_model(custom_model,version,language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
clear_gpu_cache()
run_dir = Path(output_path) / "run"
# # Remove train dir
if run_dir.exists():
os.remove(run_dir)
# Check if the dataset language matches the language you specified
lang_file_path = Path(output_path) / "dataset" / "lang.txt"
# Check if lang.txt already exists and contains a different language
current_language = None
if lang_file_path.exists():
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
if current_language != language:
print("The language that was prepared for the dataset does not match the specified language. Change the language to the one specified in the dataset")
language = current_language
if not train_csv or not eval_csv:
return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
try:
# convert seconds to waveform frames
max_audio_length = int(max_audio_length * 22050)
speaker_xtts_path,config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(custom_model,version,language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The training was interrupted due an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""
# copy original files to avoid parameters changes issues
# os.system(f"cp {config_path} {exp_path}")
# os.system(f"cp {vocab_file} {exp_path}")
ready_dir = Path(output_path) / "ready"
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
shutil.copy(ft_xtts_checkpoint, ready_dir / "unoptimize_model.pth")
# os.remove(ft_xtts_checkpoint)
ft_xtts_checkpoint = os.path.join(ready_dir, "unoptimize_model.pth")
# Reference
# Move reference audio to output folder and rename it
speaker_reference_path = Path(speaker_wav)
speaker_reference_new_path = ready_dir / "reference.wav"
shutil.copy(speaker_reference_path, speaker_reference_new_path)
print("Model training done!")
# clear_gpu_cache()
return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint,speaker_xtts_path, speaker_reference_new_path
def optimize_model(out_path, clear_train_data):
# print(out_path)
out_path = Path(out_path) # Ensure that out_path is a Path object.
ready_dir = out_path / "ready"
run_dir = out_path / "run"
dataset_dir = out_path / "dataset"
# Clear specified training data directories.
if clear_train_data in {"run", "all"} and run_dir.exists():
try:
shutil.rmtree(run_dir)
except PermissionError as e:
print(f"An error occurred while deleting {run_dir}: {e}")
if clear_train_data in {"dataset", "all"} and dataset_dir.exists():
try:
shutil.rmtree(dataset_dir)
except PermissionError as e:
print(f"An error occurred while deleting {dataset_dir}: {e}")
# Get full path to model
model_path = ready_dir / "unoptimize_model.pth"
if not model_path.is_file():
return "Unoptimized model not found in ready folder", ""
# Load the checkpoint and remove unnecessary parts.
checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
del checkpoint["optimizer"]
for key in list(checkpoint["model"].keys()):
if "dvae" in key:
del checkpoint["model"][key]
# Make sure out_path is a Path object or convert it to Path
os.remove(model_path)
# Save the optimized model.
optimized_model_file_name="model.pth"
optimized_model=ready_dir/optimized_model_file_name
torch.save(checkpoint, optimized_model)
ft_xtts_checkpoint=str(optimized_model)
clear_gpu_cache()
return f"Model optimized and saved at {ft_xtts_checkpoint}!", ft_xtts_checkpoint
def load_params(out_path):
path_output = Path(out_path)
dataset_path = path_output / "dataset"
if not dataset_path.exists():
return "The output folder does not exist!", "", ""
eval_train = dataset_path / "metadata_train.csv"
eval_csv = dataset_path / "metadata_eval.csv"
# Write the target language to lang.txt in the output directory
lang_file_path = dataset_path / "lang.txt"
# Check if lang.txt already exists and contains a different language
current_language = None
if os.path.exists(lang_file_path):
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
clear_gpu_cache()
print(current_language)
return "The data has been updated", eval_train, eval_csv, current_language
with gr.Tab("3 - Inference"):
with gr.Row():
with gr.Column() as col1:
load_params_tts_btn = gr.Button(value="Load params for TTS from output folder")
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="",
)
xtts_config = gr.Textbox(
label="XTTS config path:",
value="",
)
xtts_vocab = gr.Textbox(
label="XTTS vocab path:",
value="",
)
xtts_speaker = gr.Textbox(
label="XTTS speaker path:",
value="",
)
progress_load = gr.Label(
label="Progress:"
)
load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")
with gr.Column() as col2:
speaker_reference_audio = gr.Textbox(
label="Speaker reference audio:",
value="",
)
tts_language = gr.Dropdown(
label="Language",
value="en",
choices=[
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh",
"hu",
"ko",
"ja",
]
)
tts_text = gr.Textbox(
label="Input Text.",
value="This model sounds really good and above all, it's reasonably fast.",
)
with gr.Accordion("Advanced settings", open=False) as acr:
temperature = gr.Slider(
label="temperature",
minimum=0,
maximum=1,
step=0.05,
value=0.75,
)
length_penalty = gr.Slider(
label="length_penalty",
minimum=-10.0,
maximum=10.0,
step=0.5,
value=1,
)
repetition_penalty = gr.Slider(
label="repetition penalty",
minimum=1,
maximum=10,
step=0.5,
value=5,
)
top_k = gr.Slider(
label="top_k",
minimum=1,
maximum=100,
step=1,
value=50,
)
top_p = gr.Slider(
label="top_p",
minimum=0,
maximum=1,
step=0.05,
value=0.85,
)
speed = gr.Slider(
label="speed",
minimum=0.2,
maximum=4.0,
step=0.05,
value=1.0,
)
sentence_split = gr.Checkbox(
label="Enable text splitting",
value=True,
)
use_config = gr.Checkbox(
label="Use Inference settings from config, if disabled use the settings above",
value=False,
)
tts_btn = gr.Button(value="Step 4 - Inference")
with gr.Column() as col3:
progress_gen = gr.Label(
label="Progress:"
)
tts_output_audio = gr.Audio(label="Generated Audio.")
reference_audio = gr.Audio(label="Reference audio used.")
with gr.Column() as col4:
srt_upload = gr.File(label="Upload SRT File")
generate_srt_audio_btn = gr.Button(value="Generate Audio from SRT")
srt_output_audio = gr.Audio(label="Combined Audio from SRT")
error_message = gr.Textbox(label="Error Message", visible=False) # 错误消息组件,默认不显示
generate_srt_audio_btn.click(
fn=process_srt_and_generate_audio,
inputs=[
srt_upload,
tts_language,
speaker_reference_audio,
temperature,
length_penalty,
repetition_penalty,
top_k,
top_p,
speed,
sentence_split,
use_config
],
outputs=[srt_output_audio]
)
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
lang,
whisper_model,
out_path,
train_csv,
eval_csv
],
outputs=[
progress_data,
train_csv,
eval_csv,
],
)
load_params_btn.click(
fn=load_params,
inputs=[out_path],
outputs=[
progress_train,
train_csv,
eval_csv,
lang
]
)
train_btn.click(
fn=train_model,
inputs=[
custom_model,
version,
lang,
train_csv,
eval_csv,
num_epochs,
batch_size,
grad_acumm,
out_path,
max_audio_length,
],
outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint,xtts_speaker, speaker_reference_audio],
)
optimize_model_btn.click(
fn=optimize_model,
inputs=[
out_path,
clear_train_data
],
outputs=[progress_train,xtts_checkpoint],
)
load_btn.click(
fn=load_model,
inputs=[
xtts_checkpoint,
xtts_config,
xtts_vocab,
xtts_speaker
],
outputs=[progress_load],
)
tts_btn.click(
fn=run_tts,
inputs=[
tts_language,
tts_text,
speaker_reference_audio,
temperature,
length_penalty,
repetition_penalty,
top_k,
top_p,
speed,
sentence_split,
use_config
],
outputs=[progress_gen, tts_output_audio, reference_audio],
)
load_params_tts_btn.click(
fn=load_params_tts,
inputs=[
out_path,
version
],
outputs=[progress_load,xtts_checkpoint,xtts_config,xtts_vocab,xtts_speaker,speaker_reference_audio],
)
with gr.Tab("4 - Voice conversion"):
with gr.Column() as col0:
gr.Markdown("## OpenVoice Conversion Tool")
voice_convert_seed = gr.File(label="Upload Reference Speaker Audio being generated")
#pitch_shift_slider = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch Shift (Semitones)")
audio_to_convert = gr.Textbox(
label="Input the to-be-convert audio location",
value="",
)
convert_button = gr.Button("Convert Voice")
converted_audio = gr.Audio(label="Converted Audio")
convert_button.click(
convert_voice,
inputs=[voice_convert_seed, audio_to_convert], #, pitch_shift_slider],
outputs=[converted_audio]
)
with gr.Tab("5 - Logs"):
# 添加一个按钮来读取日志
read_logs_btn = gr.Button("Read Logs")
log_output = gr.Textbox(label="Log Output")
read_logs_btn.click(fn=read_logs, inputs=None, outputs=log_output)
demo.launch(
#share=False,
share=True,
debug=False,
server_port=args.port,
#server_name="localhost"
server_name="0.0.0.0"
) |