File size: 28,483 Bytes
1207342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import argparse
import os
from pathlib import Path
import gradio as gr
#import torch

from functions.core_functions1 import clear_gpu_cache, load_model, run_tts, load_params_tts, process_srt_and_generate_audio, convert_voice
# preprocess_dataset, load_params, train_model, optimize_model, 
from functions.logging_utils import remove_log_file, read_logs
from functions.slice_utils import open_slice, close_slice, kill_process
from utils.formatter import format_audio_list
from utils.gpt_train import train_gpt
import traceback
import shutil

from tools.i18n.i18n import I18nAuto
from tools import my_utils
from multiprocessing import cpu_count
from subprocess import Popen
from config import python_exec, is_share, webui_port_main

if __name__ == "__main__":
    # 清除旧的日志文件
    remove_log_file("logs/main.log")

    parser = argparse.ArgumentParser(
        description="""XTTS fine-tuning demo\n\n"""
        """
        Example runs:
        python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port 
        """,
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--port",
        type=int,
        help="Port to run the gradio demo. Default: 5003",
        default=5003,
    )
    parser.add_argument(
        "--out_path",
        type=str,
        help="Output path (where data and checkpoints will be saved) Default: output/",
        default=str(Path.cwd() / "finetune_models"),
    )

    parser.add_argument(
        "--num_epochs",
        type=int,
        help="Number of epochs to train. Default: 6",
        default=6,
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        help="Batch size. Default: 2",
        default=2,
    )
    parser.add_argument(
        "--grad_acumm",
        type=int,
        help="Grad accumulation steps. Default: 1",
        default=1,
    )
    parser.add_argument(
        "--max_audio_length",
        type=int,
        help="Max permitted audio size in seconds. Default: 11",
        default=11,
    )

    args = parser.parse_args()
    i18n = I18nAuto()
    n_cpu=cpu_count()
    '''     
    ngpu = torch.cuda.device_count()
    gpu_infos = []
    mem = []
    if_gpu_ok = False
    '''

    with gr.Blocks() as demo:
        with gr.Tab("0 - Audio Slicing"):
            gr.Markdown(value=i18n("0b-语音切分工具"))
            with gr.Row():
                slice_inp_path = gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"), value="")
                slice_opt_root = gr.Textbox(label=i18n("切分后的子音频的输出根目录"), value="output/slicer_opt")
                threshold = gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"), value="-34")
                min_length = gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"), value="4000")
                min_interval = gr.Textbox(label=i18n("min_interval:最短切割间隔"), value="300")
                hop_size = gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"), value="10")
                max_sil_kept = gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"), value="500")
            with gr.Row():
                open_slicer_button = gr.Button(i18n("开启语音切割"), variant="primary", visible=True)
                close_slicer_button = gr.Button(i18n("终止语音切割"), variant="primary", visible=False)
                _max = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("max:归一化后最大值多少"), value=0.9, interactive=True)
                alpha = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("alpha_mix:混多少比例归一化后音频进来"), value=0.25, interactive=True)
                n_process = gr.Slider(minimum=1, maximum=n_cpu, step=1, label=i18n("切割使用的进程数"), value=4, interactive=True)
                slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))

            open_slicer_button.click(open_slice, [slice_inp_path, slice_opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_process], [slicer_info, open_slicer_button, close_slicer_button])
            close_slicer_button.click(close_slice, [], [slicer_info, open_slicer_button, close_slicer_button])
        

        with gr.Tab("1 - Data processing"):
            out_path = gr.Textbox(label="Output path (where data and checkpoints will be saved):", value=args.out_path)
            upload_file = gr.File(file_count="multiple", label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)")
            folder_path = gr.Textbox(label="Or input the path of a folder containing audio files")
            whisper_model = gr.Dropdown(label="Whisper Model", value="large-v3", choices=["large-v3", "large-v2", "large", "medium", "small"])
            lang = gr.Dropdown(label="Dataset Language", value="en", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh", "hu", "ko", "ja"])
            progress_data = gr.Label(label="Progress:")
            prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")


            def get_audio_files_from_folder(folder_path):
                audio_files = []
                for root, dirs, files in os.walk(folder_path):
                    for file in files:
                        if file.endswith(".wav") or file.endswith(".mp3") or file.endswith(".flac") or file.endswith(".m4a") or file.endswith(".webm"):
                            audio_files.append(os.path.join(root, file))
                return audio_files

            def preprocess_dataset(audio_path, audio_folder, language, whisper_model, out_path, train_csv, eval_csv, progress=gr.Progress(track_tqdm=True)):
                clear_gpu_cache()

                train_csv = ""
                eval_csv = ""

                out_path = os.path.join(out_path, "dataset")
                os.makedirs(out_path, exist_ok=True)

                # 检测输入是单个文件、多个文件还是文件夹
                if audio_path is not None and audio_path != []:
                    # 处理单个文件或多个文件
                    try:
                        train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, whisper_model=whisper_model, target_language=language, out_path=out_path, gradio_progress=progress)
                    except:
                        traceback.print_exc()
                        error = traceback.format_exc()
                        return f"The data processing was interrupted due to an error! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
                elif audio_folder is not None:
                    # 处理文件夹
                    audio_files = get_audio_files_from_folder(audio_folder)
                    try:
                        train_meta, eval_meta, audio_total_size = format_audio_list(audio_files, whisper_model=whisper_model, target_language=language, out_path=out_path, gradio_progress=progress)
                    except:
                        traceback.print_exc()
                        error = traceback.format_exc()
                        return f"The data processing was interrupted due to an error! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
                else:
                    return "You should provide either audio files or a folder containing audio files!", "", ""

                # if audio total len is less than 2 minutes raise an error
                if audio_total_size < 120:
                    message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
                    print(message)
                    return message, "", ""

                print("Dataset Processed!")
                return "Dataset Processed!", train_meta, eval_meta
            #prompt_compute_btn.click(preprocess_dataset, inputs=[upload_file, upload_folder, lang, whisper_model, out_path, train_csv, eval_csv], outputs=[progress_data, train_csv, eval_csv])
            
            '''
            def preprocess_dataset(audio_path, language, whisper_model, out_path,train_csv,eval_csv, progress=gr.Progress(track_tqdm=True)):
                clear_gpu_cache()

                train_csv = ""
                eval_csv = ""

                out_path = os.path.join(out_path, "dataset")
                os.makedirs(out_path, exist_ok=True)
                if audio_path is None:
                    return "You should provide one or multiple audio files! If you provided it, probably the upload of the files is not finished yet!", "", ""
                else:
                    try:
                        train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, whisper_model = whisper_model, target_language=language, out_path=out_path, gradio_progress=progress)
                    except:
                        traceback.print_exc()
                        error = traceback.format_exc()
                        return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", ""

                # clear_gpu_cache()

                # if audio total len is less than 2 minutes raise an error
                if audio_total_size < 120:
                    message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
                    print(message)
                    return message, "", ""

                print("Dataset Processed!")
                return "Dataset Processed!", train_meta, eval_meta
            '''

        with gr.Tab("2 - Fine-tuning XTTS Encoder"):
            load_params_btn = gr.Button(value="Load Params from output folder")
            version = gr.Dropdown(
                label="XTTS base version",
                value="v2.0.2",
                choices=[
                    "v2.0.3",
                    "v2.0.2",
                    "v2.0.1",
                    "v2.0.0",
                    "main"
                ],
            )
            train_csv = gr.Textbox(
                label="Train CSV:",
            )
            eval_csv = gr.Textbox(
                label="Eval CSV:",
            )
            custom_model = gr.Textbox(
                label="(Optional) Custom model.pth file , leave blank if you want to use the base file.",
                value="",
            )
            num_epochs =  gr.Slider(
                label="Number of epochs:",
                minimum=1,
                maximum=100,
                step=1,
                value=args.num_epochs,
            )
            batch_size = gr.Slider(
                label="Batch size:",
                minimum=2,
                maximum=512,
                step=1,
                value=args.batch_size,
            )
            grad_acumm = gr.Slider(
                label="Grad accumulation steps:",
                minimum=2,
                maximum=128,
                step=1,
                value=args.grad_acumm,
            )
            max_audio_length = gr.Slider(
                label="Max permitted audio size in seconds:",
                minimum=2,
                maximum=20,
                step=1,
                value=args.max_audio_length,
            )
            clear_train_data = gr.Dropdown(
                label="Clear train data, you will delete selected folder, after optimizing",
                value="run",
                choices=[
                    "none",
                    "run",
                    "dataset",
                    "all"
                ])
            
            progress_train = gr.Label(
                label="Progress:"
            )

            # demo.load(read_logs, None, logs_tts_train, every=1)
            train_btn = gr.Button(value="Step 2 - Run the training")
            optimize_model_btn = gr.Button(value="Step 2.5 - Optimize the model")
            
            def train_model(custom_model,version,language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
                clear_gpu_cache()

                run_dir = Path(output_path) / "run"

                # # Remove train dir
                if run_dir.exists():
                    os.remove(run_dir)
                
                # Check if the dataset language matches the language you specified 
                lang_file_path = Path(output_path) / "dataset" / "lang.txt"

                # Check if lang.txt already exists and contains a different language
                current_language = None
                if lang_file_path.exists():
                    with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
                        current_language = existing_lang_file.read().strip()
                        if current_language != language:
                            print("The language that was prepared for the dataset does not match the specified language. Change the language to the one specified in the dataset")
                            language = current_language
                        
                if not train_csv or not eval_csv:
                    return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
                try:
                    # convert seconds to waveform frames
                    max_audio_length = int(max_audio_length * 22050)
                    speaker_xtts_path,config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(custom_model,version,language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
                except:
                    traceback.print_exc()
                    error = traceback.format_exc()
                    return f"The training was interrupted due an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""

                # copy original files to avoid parameters changes issues
                # os.system(f"cp {config_path} {exp_path}")
                # os.system(f"cp {vocab_file} {exp_path}")
                
                ready_dir = Path(output_path) / "ready"

                ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")

                shutil.copy(ft_xtts_checkpoint, ready_dir / "unoptimize_model.pth")
                # os.remove(ft_xtts_checkpoint)

                ft_xtts_checkpoint = os.path.join(ready_dir, "unoptimize_model.pth")

                # Reference
                # Move reference audio to output folder and rename it
                speaker_reference_path = Path(speaker_wav)
                speaker_reference_new_path = ready_dir / "reference.wav"
                shutil.copy(speaker_reference_path, speaker_reference_new_path)

                print("Model training done!")
                # clear_gpu_cache()
                return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint,speaker_xtts_path, speaker_reference_new_path

            def optimize_model(out_path, clear_train_data):
                # print(out_path)
                out_path = Path(out_path)  # Ensure that out_path is a Path object.
            
                ready_dir = out_path / "ready"
                run_dir = out_path / "run"
                dataset_dir = out_path / "dataset"
            
                # Clear specified training data directories.
                if clear_train_data in {"run", "all"} and run_dir.exists():
                    try:
                        shutil.rmtree(run_dir)
                    except PermissionError as e:
                        print(f"An error occurred while deleting {run_dir}: {e}")
            
                if clear_train_data in {"dataset", "all"} and dataset_dir.exists():
                    try:
                        shutil.rmtree(dataset_dir)
                    except PermissionError as e:
                        print(f"An error occurred while deleting {dataset_dir}: {e}")
            
                # Get full path to model
                model_path = ready_dir / "unoptimize_model.pth"

                if not model_path.is_file():
                    return "Unoptimized model not found in ready folder", ""
            
                # Load the checkpoint and remove unnecessary parts.
                checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
                del checkpoint["optimizer"]

                for key in list(checkpoint["model"].keys()):
                    if "dvae" in key:
                        del checkpoint["model"][key]

                # Make sure out_path is a Path object or convert it to Path
                os.remove(model_path)

                  # Save the optimized model.
                optimized_model_file_name="model.pth"
                optimized_model=ready_dir/optimized_model_file_name
            
                torch.save(checkpoint, optimized_model)
                ft_xtts_checkpoint=str(optimized_model)

                clear_gpu_cache()
        
                return f"Model optimized and saved at {ft_xtts_checkpoint}!", ft_xtts_checkpoint

            def load_params(out_path):
                path_output = Path(out_path)
                
                dataset_path = path_output / "dataset"

                if not dataset_path.exists():
                    return "The output folder does not exist!", "", ""

                eval_train = dataset_path / "metadata_train.csv"
                eval_csv = dataset_path / "metadata_eval.csv"

                # Write the target language to lang.txt in the output directory
                lang_file_path =  dataset_path / "lang.txt"

                # Check if lang.txt already exists and contains a different language
                current_language = None
                if os.path.exists(lang_file_path):
                    with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
                        current_language = existing_lang_file.read().strip()

                clear_gpu_cache()

                print(current_language)
                return "The data has been updated", eval_train, eval_csv, current_language

        with gr.Tab("3 - Inference"):
            with gr.Row():
                with gr.Column() as col1:
                    load_params_tts_btn = gr.Button(value="Load params for TTS from output folder")
                    xtts_checkpoint = gr.Textbox(
                        label="XTTS checkpoint path:",
                        value="",
                    )
                    xtts_config = gr.Textbox(
                        label="XTTS config path:",
                        value="",
                    )

                    xtts_vocab = gr.Textbox(
                        label="XTTS vocab path:",
                        value="",
                    )
                    xtts_speaker = gr.Textbox(
                        label="XTTS speaker path:",
                        value="",
                    )
                    progress_load = gr.Label(
                        label="Progress:"
                    )
                    load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")

                with gr.Column() as col2:
                    speaker_reference_audio = gr.Textbox(
                        label="Speaker reference audio:",
                        value="",
                    )
                    tts_language = gr.Dropdown(
                        label="Language",
                        value="en",
                        choices=[
                            "en",
                            "es",
                            "fr",
                            "de",
                            "it",
                            "pt",
                            "pl",
                            "tr",
                            "ru",
                            "nl",
                            "cs",
                            "ar",
                            "zh",
                            "hu",
                            "ko",
                            "ja",
                        ]
                    )
                    tts_text = gr.Textbox(
                        label="Input Text.",
                        value="This model sounds really good and above all, it's reasonably fast.",
                    )
                    with gr.Accordion("Advanced settings", open=False) as acr:
                        temperature = gr.Slider(
                            label="temperature",
                            minimum=0,
                            maximum=1,
                            step=0.05,
                            value=0.75,
                        )
                        length_penalty  = gr.Slider(
                            label="length_penalty",
                            minimum=-10.0,
                            maximum=10.0,
                            step=0.5,
                            value=1,
                        )
                        repetition_penalty = gr.Slider(
                            label="repetition penalty",
                            minimum=1,
                            maximum=10,
                            step=0.5,
                            value=5,
                        )
                        top_k = gr.Slider(
                            label="top_k",
                            minimum=1,
                            maximum=100,
                            step=1,
                            value=50,
                        )
                        top_p = gr.Slider(
                            label="top_p",
                            minimum=0,
                            maximum=1,
                            step=0.05,
                            value=0.85,
                        )
                        speed = gr.Slider(
                            label="speed",
                            minimum=0.2,
                            maximum=4.0,
                            step=0.05,
                            value=1.0,
                        )                        
                        sentence_split = gr.Checkbox(
                            label="Enable text splitting",
                            value=True,
                        )
                        use_config = gr.Checkbox(
                            label="Use Inference settings from config, if disabled use the settings above",
                            value=False,
                        )
                    tts_btn = gr.Button(value="Step 4 - Inference")

                with gr.Column() as col3:
                    progress_gen = gr.Label(
                        label="Progress:"
                    )
                    tts_output_audio = gr.Audio(label="Generated Audio.")
                    reference_audio = gr.Audio(label="Reference audio used.")


                with gr.Column() as col4:
                    srt_upload = gr.File(label="Upload SRT File")
                    generate_srt_audio_btn = gr.Button(value="Generate Audio from SRT")
                    srt_output_audio = gr.Audio(label="Combined Audio from SRT")
                    error_message = gr.Textbox(label="Error Message", visible=False)  # 错误消息组件,默认不显示

            generate_srt_audio_btn.click(
                fn=process_srt_and_generate_audio,
                inputs=[
                    srt_upload, 
                    tts_language,
                    speaker_reference_audio,
                    temperature,
                    length_penalty,
                    repetition_penalty,
                    top_k,
                    top_p,
                    speed,
                    sentence_split,
                    use_config                  
                ],
                outputs=[srt_output_audio]
            )

            prompt_compute_btn.click(
                fn=preprocess_dataset,
                inputs=[
                    upload_file,
                    lang,
                    whisper_model,
                    out_path,
                    train_csv,
                    eval_csv
                ],
                outputs=[
                    progress_data,
                    train_csv,
                    eval_csv,
                ],
            )

            load_params_btn.click(
                fn=load_params,
                inputs=[out_path],
                outputs=[
                    progress_train,
                    train_csv,
                    eval_csv,
                    lang
                ]
            )


            train_btn.click(
                fn=train_model,
                inputs=[
                    custom_model,
                    version,
                    lang,
                    train_csv,
                    eval_csv,
                    num_epochs,
                    batch_size,
                    grad_acumm,
                    out_path,
                    max_audio_length,
                ],
                outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint,xtts_speaker, speaker_reference_audio],
            )

            optimize_model_btn.click(
                fn=optimize_model,
                inputs=[
                    out_path,
                    clear_train_data
                ],
                outputs=[progress_train,xtts_checkpoint],
            )
            
            load_btn.click(
                fn=load_model,
                inputs=[
                    xtts_checkpoint,
                    xtts_config,
                    xtts_vocab,
                    xtts_speaker
                ],
                outputs=[progress_load],
            )

            tts_btn.click(
                fn=run_tts,
                inputs=[
                    tts_language,
                    tts_text,
                    speaker_reference_audio,
                    temperature,
                    length_penalty,
                    repetition_penalty,
                    top_k,
                    top_p,
                    speed,
                    sentence_split,
                    use_config
                ],
                outputs=[progress_gen, tts_output_audio, reference_audio],
            )

            load_params_tts_btn.click(
                fn=load_params_tts,
                inputs=[
                    out_path,
                    version
                    ],
                outputs=[progress_load,xtts_checkpoint,xtts_config,xtts_vocab,xtts_speaker,speaker_reference_audio],
            )
        
        with gr.Tab("4 - Voice conversion"):
          with gr.Column() as col0:
                    gr.Markdown("## OpenVoice Conversion Tool")
                    voice_convert_seed = gr.File(label="Upload Reference Speaker Audio being generated")
                    #pitch_shift_slider = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch Shift (Semitones)")
                    audio_to_convert = gr.Textbox(
                        label="Input the to-be-convert audio location",
                        value="",
                    )
                    convert_button = gr.Button("Convert Voice")
                    converted_audio = gr.Audio(label="Converted Audio")

          convert_button.click(
              convert_voice, 
              inputs=[voice_convert_seed, audio_to_convert], #, pitch_shift_slider],
              outputs=[converted_audio]
          )
        
        with gr.Tab("5 - Logs"):
            # 添加一个按钮来读取日志
            read_logs_btn = gr.Button("Read Logs")
            log_output = gr.Textbox(label="Log Output")
            read_logs_btn.click(fn=read_logs, inputs=None, outputs=log_output)
    

    demo.launch(
        #share=False,
        share=True,
        debug=False,
        server_port=args.port,
        #server_name="localhost"
        server_name="0.0.0.0"
    )