Spaces:
Build error
Build error
File size: 12,150 Bytes
1207342 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import sys
# 获取当前文件所在目录的上一级目录
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# 将根目录添加到系统路径
sys.path.append(root_dir)
import tempfile
import logging
from pathlib import Path
from datetime import datetime
from pydub import AudioSegment
import pysrt
import torch
import torchaudio
import traceback
from .utils.formatter import format_audio_list, find_latest_best_model
from .utils.gpt_train import train_gpt
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from .openvoice_cli.downloader import download_checkpoint
from .openvoice_cli.api import ToneColorConverter
import .openvoice_cli.se_extractor as se_extractor
from logging_utils import setup_logger, read_logs
# 设置日志处理器
setup_logger("logs/core_functions.log")
logger = logging.getLogger(__name__)
def clear_gpu_cache():
# clear the GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
XTTS_MODEL = None
def load_model(xtts_checkpoint, xtts_config, xtts_vocab,xtts_speaker):
global XTTS_MODEL
clear_gpu_cache()
if not xtts_checkpoint or not xtts_config or not xtts_vocab:
return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
print("Loading XTTS model! ")
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab,speaker_file_path=xtts_speaker, use_deepspeed=False)
if torch.cuda.is_available():
XTTS_MODEL.cuda()
print("Model Loaded!")
return "Model Loaded!"
def run_tts(lang, tts_text, speaker_audio_file, output_file_path, temperature, length_penalty, repetition_penalty, top_k, top_p, speed, sentence_split, use_config):
if XTTS_MODEL is None:
raise Exception("XTTS_MODEL is not loaded. Please load the model before running TTS.")
if not tts_text.strip():
raise ValueError("Text for TTS is empty.")
if not os.path.exists(speaker_audio_file):
raise FileNotFoundError(f"Speaker audio file not found: {speaker_audio_file}")
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
if use_config:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
length_penalty=XTTS_MODEL.config.length_penalty,
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
top_k=XTTS_MODEL.config.top_k,
top_p=XTTS_MODEL.config.top_p,
speed=speed,
enable_text_splitting = True
)
else:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=temperature, # Add custom parameters here
length_penalty=length_penalty,
repetition_penalty=float(repetition_penalty),
top_k=top_k,
top_p=top_p,
speed=speed,
enable_text_splitting = sentence_split
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
out_path = fp.name
torchaudio.save(out_path, out["wav"], 24000)
return "Speech generated !", out_path, speaker_audio_file
def load_params_tts(out_path,version):
out_path = Path(out_path)
# base_model_path = Path.cwd() / "models" / version
# if not base_model_path.exists():
# return "Base model not found !","","",""
ready_model_path = out_path / "ready"
vocab_path = ready_model_path / "vocab.json"
config_path = ready_model_path / "config.json"
speaker_path = ready_model_path / "speakers_xtts.pth"
reference_path = ready_model_path / "reference.wav"
model_path = ready_model_path / "model.pth"
if not model_path.exists():
model_path = ready_model_path / "unoptimize_model.pth"
if not model_path.exists():
return "Params for TTS not found", "", "", ""
return "Params for TTS loaded", model_path, config_path, vocab_path,speaker_path, reference_path
def process_srt_and_generate_audio(
srt_file,
lang,
speaker_reference_audio,
temperature,
length_penalty,
repetition_penalty,
top_k,
top_p,
speed,
sentence_split,
use_config ):
try:
subtitles = pysrt.open(srt_file)
audio_files = []
output_dir = create_output_dir(parent_dir='/content/drive/MyDrive/Voice Conversion Result')
for index, subtitle in enumerate(subtitles):
audio_filename = f"audio_{index+1:03d}.wav"
audio_file_path = os.path.join(output_dir, audio_filename)
subtitle_text=remove_endperiod(subtitle.text)
run_tts(lang, subtitle_text, speaker_reference_audio, audio_file_path,
temperature, length_penalty, repetition_penalty, top_k, top_p,
speed, sentence_split, use_config)
logger.info(f"Generated audio file: {audio_file_path}")
audio_files.append(audio_file_path)
output_audio_path = merge_audio_with_srt_timing(subtitles, audio_files, output_dir)
return output_audio_path
except Exception as e:
logger.error(f"Error in process_srt_and_generate_audio: {e}")
raise
def create_output_dir(parent_dir):
try:
# 定义一个基于当前日期和时间的文件夹名称
folder_name = datetime.now().strftime("audio_outputs_%Y-%m-%d_%H-%M-%S")
# 定义父目录,这里假设在Colab的根目录
#parent_dir = "/content/drive/MyDrive/Voice Conversion Result"
# 完整的文件夹路径
output_dir = os.path.join(parent_dir, folder_name)
# 创建文件夹
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger.info(f"Created output directory at: {output_dir}")
return output_dir
except Exception as e:
logger.error(f"Failed to create output directory: {e}")
raise
def srt_time_to_ms(srt_time):
return (srt_time.hours * 3600 + srt_time.minutes * 60 + srt_time.seconds) * 1000 + srt_time.milliseconds
def merge_audio_with_srt_timing(subtitles, audio_files, output_dir):
try:
combined = AudioSegment.silent(duration=0)
last_position_ms = 0
for subtitle, audio_file in zip(subtitles, audio_files):
start_time_ms = srt_time_to_ms(subtitle.start)
if last_position_ms < start_time_ms:
silence_duration = start_time_ms - last_position_ms
combined += AudioSegment.silent(duration=silence_duration)
last_position_ms = start_time_ms
audio = AudioSegment.from_file(audio_file, format="wav")
combined += audio
last_position_ms += len(audio)
output_path = os.path.join(output_dir, "combined_audio_with_timing.wav")
#combined_with_set_frame_rate = combined.set_frame_rate(24000)
#combined_with_set_frame_rate.export(output_path, format="wav")
combined.export(output_path, format="wav")
logger.info(f"Exported combined audio to: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error merging audio files: {e}")
raise
def remove_endperiod(subtitle):
"""Removes the period (.) at the end of a subtitle.
"""
if subtitle.endswith('.'):
subtitle = subtitle[:-1]
return subtitle
def convert_voice(reference_audio, audio_to_convert):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# 定义输入和输出音频路径
#input_audio_path = audio_to_convert
base_name, ext = os.path.splitext(os.path.basename(audio_to_convert))
new_file_name = base_name + 'convertedvoice' + ext
output_path = os.path.join(os.path.dirname(audio_to_convert), new_file_name)
tune_one(input_file=audio_to_convert, ref_file=reference_audio, output_file=output_path, device=device)
return output_path
def tune_one(input_file,ref_file,output_file,device):
current_dir = os.path.dirname(os.path.realpath(__file__))
checkpoints_dir = os.path.join(current_dir, 'checkpoints')
ckpt_converter = os.path.join(checkpoints_dir, 'converter')
if not os.path.exists(ckpt_converter):
os.makedirs(ckpt_converter, exist_ok=True)
download_checkpoint(ckpt_converter)
device = device
tone_color_converter = ToneColorConverter(os.path.join(ckpt_converter, 'config.json'), device=device)
tone_color_converter.load_ckpt(os.path.join(ckpt_converter, 'checkpoint.pth'))
source_se, _ = se_extractor.get_se(input_file, tone_color_converter, vad=True)
target_se, _ = se_extractor.get_se(ref_file, tone_color_converter, vad=True)
# Ensure output directory exists and is writable
output_dir = os.path.dirname(output_file)
if output_dir:
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
# Run the tone color converter
tone_color_converter.convert(
audio_src_path=input_file,
src_se=source_se,
tgt_se=target_se,
output_path=output_file,
)
'''
def tune_batch(input_dir, ref_file, output_dir=None, device='cpu', output_format='.wav'):
current_dir = os.path.dirname(os.path.realpath(__file__))
checkpoints_dir = os.path.join(current_dir, 'checkpoints')
ckpt_converter = os.path.join(checkpoints_dir, 'converter')
if not os.path.exists(ckpt_converter):
os.makedirs(ckpt_converter, exist_ok=True)
download_checkpoint(ckpt_converter)
tone_color_converter = ToneColorConverter(os.path.join(ckpt_converter, 'config.json'), device=device)
tone_color_converter.load_ckpt(os.path.join(ckpt_converter, 'checkpoint.pth'))
target_se, _ = se_extractor.get_se(ref_file, tone_color_converter, vad=True)
# Use default output directory 'out' if not provided
if output_dir is None:
output_dir = os.path.join(current_dir, 'out')
os.makedirs(output_dir, exist_ok=True)
# Check for any audio files in the input directory (wav, mp3, flac) using glob
audio_extensions = ('*.wav', '*.mp3', '*.flac')
audio_files = []
for extension in audio_extensions:
audio_files.extend(glob.glob(os.path.join(input_dir, extension)))
for audio_file in tqdm(audio_files,"Tune file",len(audio_files)):
# Extract source SE from audio file
source_se, _ = se_extractor.get_se(audio_file, tone_color_converter, vad=True)
# Run the tone color converter
filename_without_extension = os.path.splitext(os.path.basename(audio_file))[0]
output_filename = f"{filename_without_extension}_tuned{output_format}"
output_file = os.path.join(output_dir, output_filename)
tone_color_converter.convert(
audio_src_path=audio_file,
src_se=source_se,
tgt_se=target_se,
output_path=output_file,
)
print(f"Converted {audio_file} to {output_file}")
return output_dir
def main_single(args):
tune_one(input_file=args.input, ref_file=args.ref, output_file=args.output, device=args.device)
def main_batch(args):
output_dir = tune_batch(
input_dir=args.input_dir,
ref_file=args.ref_file,
output_dir=args.output_dir,
device=args.device,
output_format=args.output_format
)
print(f"Batch processing complete. Converted files are saved in {output_dir}")
'''
|