Spaces:
Build error
Build error
File size: 16,078 Bytes
1207342 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# main.py
import gradio as gr
from gradio import State
from gradio_utils import *
from pathlib import Path
import argparse
from tools.i18n.i18n import I18nAuto
from config import is_share, webui_port_main
from functions.core_functions import convert_voice, process_srt_and_generate_audio, load_model, run_tts
from functions.slice_utils import open_slice, close_slice
from functions.logging_utils import remove_log_file, read_logs
from multiprocessing import cpu_count
import os
from subprocess import Popen
def launch():
parser = argparse.ArgumentParser(
description="""XTTS fine-tuning demo\n\n"""
"""
Example runs:
python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--port",
type=int,
help="Port to run the gradio demo. Default: 5003",
default=5003,
)
parser.add_argument(
"--out_path",
type=str,
help="Output path (where data and checkpoints will be saved) Default: output/",
default=str(Path.cwd() / "finetune_models"),
)
parser.add_argument(
"--num_epochs",
type=int,
help="Number of epochs to train. Default: 6",
default=6,
)
parser.add_argument(
"--batch_size",
type=int,
help="Batch size. Default: 2",
default=2,
)
parser.add_argument(
"--grad_acumm",
type=int,
help="Grad accumulation steps. Default: 1",
default=1,
)
parser.add_argument(
"--max_audio_length",
type=int,
help="Max permitted audio size in seconds. Default: 11",
default=11,
)
args = parser.parse_args()
i18n = I18nAuto()
demo = gr.Blocks()
with demo:
with gr.Tab("0 - Audio Slicing"):
gr.Markdown(value=i18n("语音切分工具"))
with gr.Row():
slice_inp_path = gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"), value="")
slice_opt_root = gr.Textbox(label=i18n("切分后的子音频的输出根目录"), value="output/slicer_opt")
threshold = gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"), value="-34")
min_length = gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"), value="4000")
min_interval = gr.Textbox(label=i18n("min_interval:最短切割间隔"), value="300")
hop_size = gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"), value="10")
max_sil_kept = gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"), value="500")
with gr.Row():
open_slicer_button = gr.Button(i18n("开启语音切割"), variant="primary", visible=True)
close_slicer_button = gr.Button(i18n("终止语音切割"), variant="primary", visible=False)
_max = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("max:归一化后最大值多少"), value=0.9, interactive=True)
alpha = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("alpha_mix:混多少比例归一化后音频进来"), value=0.25, interactive=True)
n_process = gr.Slider(minimum=1, maximum=cpu_count(), step=1, label=i18n("切割使用的进程数"), value=4, interactive=True)
slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
open_slicer_button.click(open_slice, [slice_inp_path, slice_opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_process], [slicer_info, open_slicer_button, close_slicer_button])
close_slicer_button.click(close_slice, [], [slicer_info, open_slicer_button, close_slicer_button])
with gr.Tab("1 - Data processing"):
out_path = gr.Textbox(label="Output path (where data and checkpoints will be saved):", value=args.out_path)
upload_file = gr.File(file_count="multiple", label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)")
folder_path = gr.Textbox(label="Or input the path of a folder containing audio files")
whisper_model = gr.Dropdown(label="Whisper Model", value="large-v3", choices=["large-v3", "large-v2", "large", "medium", "small"])
lang = gr.Dropdown(label="Dataset Language", value="en", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh", "hu", "ko", "ja"])
progress_data = gr.Label(label="Progress:")
#train_csv = gr.Textbox(visible=False)
#eval_csv = gr.Textbox(visible=False)
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")
train_csv_state = State()
eval_csv_state = State()
prompt_compute_btn.click(preprocess_dataset, inputs=[upload_file, folder_path, lang, whisper_model, out_path, train_csv_state, eval_csv_state], outputs=[progress_data, train_csv_state, eval_csv_state])
#prompt_compute_btn.click(preprocess_dataset, inputs=[upload_file, folder_path, lang, whisper_model, out_path, train_csv, eval_csv], outputs=[progress_data, train_csv, eval_csv])
with gr.Tab("2 - Fine-tuning XTTS Encoder"):
load_params_btn = gr.Button(value="Load Params from output folder")
version = gr.Dropdown(
label="XTTS base version",
value="v2.0.2",
choices=[
"v2.0.3",
"v2.0.2",
"v2.0.1",
"v2.0.0",
"main"
],
)
train_csv = gr.Textbox(
label="Train CSV:",
)
eval_csv = gr.Textbox(
label="Eval CSV:",
)
custom_model = gr.Textbox(
label="(Optional) Custom model.pth file , leave blank if you want to use the base file.",
value="",
)
num_epochs = gr.Slider(
label="Number of epochs:",
minimum=1,
maximum=100,
step=1,
value=args.num_epochs,
)
batch_size = gr.Slider(
label="Batch size:",
minimum=2,
maximum=512,
step=1,
value=args.batch_size,
)
grad_acumm = gr.Slider(
label="Grad accumulation steps:",
minimum=2,
maximum=128,
step=1,
value=args.grad_acumm,
)
max_audio_length = gr.Slider(
label="Max permitted audio size in seconds:",
minimum=2,
maximum=20,
step=1,
value=args.max_audio_length,
)
clear_train_data = gr.Dropdown(
label="Clear train data, you will delete selected folder, after optimizing",
value="run",
choices=[
"none",
"run",
"dataset",
"all"
])
progress_train = gr.Label(
label="Progress:"
)
train_btn = gr.Button(value="Step 2 - Run the training")
optimize_model_btn = gr.Button(value="Step 2.5 - Optimize the model")
load_params_btn.click(load_params, inputs=[out_path], outputs=[progress_train, train_csv, eval_csv, lang])
train_output_state = State()
optimize_output_state = State()
train_btn.click(train_model, inputs=[custom_model, version, lang, train_csv_state, eval_csv_state, num_epochs, batch_size, grad_acumm, out_path, max_audio_length], outputs=[progress_train, train_output_state])
optimize_model_btn.click(optimize_model, inputs=[out_path, clear_train_data], outputs=[progress_train, optimize_output_state])
#train_btn.click(train_model, inputs=[custom_model, version, lang, train_csv_state, eval_csv_state, num_epochs, batch_size, grad_acumm, out_path, max_audio_length], outputs=[progress_train, train_output_state])
# train_btn.click(train_model, inputs=[custom_model, version, lang, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, out_path, max_audio_length], outputs=[progress_train, "temp", "temp", "temp", "temp", "temp"])
#optimize_model_btn.click(optimize_model, inputs=[out_path, clear_train_data], outputs=[progress_train, "temp"])
with gr.Tab("3 - Inference"):
with gr.Row():
with gr.Column() as col1:
load_params_tts_btn = gr.Button(value="Load params for TTS from output folder")
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="",
)
xtts_config = gr.Textbox(
label="XTTS config path:",
value="",
)
xtts_vocab = gr.Textbox(
label="XTTS vocab path:",
value="",
)
xtts_speaker = gr.Textbox(
label="XTTS speaker path:",
value="",
)
progress_load = gr.Label(
label="Progress:"
)
load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")
with gr.Column() as col2:
speaker_reference_audio = gr.Textbox(
label="Speaker reference audio:",
value="",
)
tts_language = gr.Dropdown(
label="Language",
value="en",
choices=[
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh",
"hu",
"ko",
"ja",
]
)
tts_text = gr.Textbox(
label="Input Text.",
value="This model sounds really good and above all, it's reasonably fast.",
)
with gr.Accordion("Advanced settings", open=False) as acr:
temperature = gr.Slider(
label="temperature",
minimum=0,
maximum=1,
step=0.05,
value=0.75,
)
length_penalty = gr.Slider(
label="length_penalty",
minimum=-10.0,
maximum=10.0,
step=0.5,
value=1,
)
repetition_penalty = gr.Slider(
label="repetition penalty",
minimum=1,
maximum=10,
step=0.5,
value=5,
)
top_k = gr.Slider(
label="top_k",
minimum=1,
maximum=100,
step=1,
value=50,
)
top_p = gr.Slider(
label="top_p",
minimum=0,
maximum=1,
step=0.05,
value=0.85,
)
sentence_split = gr.Checkbox(
label="Enable text splitting",
value=True,
)
use_config = gr.Checkbox(
label="Use Inference settings from config, if disabled use the settings above",
value=False,
)
tts_btn = gr.Button(value="Step 4 - Inference")
with gr.Column() as col3:
progress_gen = gr.Label(
label="Progress:"
)
tts_output_audio = gr.Audio(label="Generated Audio.")
reference_audio = gr.Audio(label="Reference audio used.")
with gr.Column() as col4:
srt_upload = gr.File(label="Upload SRT File")
generate_srt_audio_btn = gr.Button(value="Generate Audio from SRT")
srt_output_audio = gr.Audio(label="Combined Audio from SRT")
error_message = gr.Textbox(label="Error Message", visible=False)
generate_srt_audio_btn.click(process_srt_and_generate_audio, inputs=[srt_upload, tts_language, speaker_reference_audio, temperature, length_penalty, repetition_penalty, top_k, top_p, sentence_split, use_config], outputs=[srt_output_audio])
load_btn.click(load_model, inputs=[xtts_checkpoint, xtts_config, xtts_vocab, xtts_speaker], outputs=[progress_load])
tts_btn.click(run_tts, inputs=[tts_language, tts_text, speaker_reference_audio, temperature, length_penalty, repetition_penalty, top_k, top_p, sentence_split, use_config], outputs=[progress_gen, tts_output_audio, reference_audio])
load_params_tts_btn.click(load_params_tts, inputs=[out_path, version], outputs=[progress_load, xtts_checkpoint, xtts_config, xtts_vocab, xtts_speaker, speaker_reference_audio])
with gr.Tab("4 - Voice conversion"):
with gr.Column() as col0:
gr.Markdown("## OpenVoice Conversion Tool")
voice_convert_seed = gr.File(label="Upload Reference Speaker Audio being generated")
audio_to_convert = gr.Textbox(
label="Input the to-be-convert audio location",
value="",
)
convert_button = gr.Button("Convert Voice")
converted_audio = gr.Audio(label="Converted Audio")
convert_button.click(convert_voice, inputs=[voice_convert_seed, audio_to_convert], outputs=[converted_audio])
with gr.Tab("5 - Logs"):
# 添加一个按钮来读取日志
read_logs_btn = gr.Button("Read Logs")
log_output = gr.Textbox(label="Log Output")
read_logs_btn.click(fn=read_logs, inputs=None, outputs=log_output)
#demo.launch(share=is_share, server_port=webui_port_main, server_name="0.0.0.0")
demo.launch(
#share=False,
share=True,
debug=False,
server_port=args.port,
#server_name="localhost"
server_name="0.0.0.0"
)
'''
demo.launch(
server_name="0.0.0.0",
inbrowser=True,
share=is_share,
server_port=webui_port_main,
quiet=True,
)
'''
if __name__ == "__main__":
remove_log_file("logs/main.log")
launch() |