awinml commited on
Commit
392b435
·
1 Parent(s): b73ffc8

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -15
app.py CHANGED
@@ -3,6 +3,7 @@ import streamlit_scrollable_textbox as stx
3
  from ast import literal_eval
4
  import pinecone
5
  import streamlit as st
 
6
 
7
  st.set_page_config(layout="wide") # isort: split
8
 
@@ -89,17 +90,21 @@ sparse_scores = np.argsort(bm25.get_scores(tokenized_query), axis=0)[::-1]
89
  indices = get_bm25_search_hits(corpus, sparse_scores, 50)
90
 
91
 
92
- dense_embedding_output = instructor_model.predict(
93
  query_embedding_instruction,
94
  query_text,
95
  api_name="/predict",
96
  )
97
 
98
- dense_embedding_arr = np.array(
99
- literal_eval(dense_embedding_output)[0], dtype=np.float64
100
- )
101
- dense_embedding = dense_embedding_arr.tolist()
102
- print(type(dense_embedding[2]))
 
 
 
 
103
  # dense_embedding = [float(x) for x in dense_embedding_output[0]]
104
 
105
  text_embedding_instructions_choice = [
@@ -151,13 +156,10 @@ with col2:
151
  unsafe_allow_html=True,
152
  )
153
 
154
- tab1 = st.tabs(["View transcript"])
155
-
156
 
157
- with tab1:
158
- file_text = retrieve_transcript()
159
- with st.expander("See Transcript"):
160
- st.subheader("AMD Q1 2020 Earnings Call Transcript:")
161
- stx.scrollableTextbox(
162
- file_text, height=700, border=False, fontFamily="Helvetica"
163
- )
 
3
  from ast import literal_eval
4
  import pinecone
5
  import streamlit as st
6
+ import json
7
 
8
  st.set_page_config(layout="wide") # isort: split
9
 
 
90
  indices = get_bm25_search_hits(corpus, sparse_scores, 50)
91
 
92
 
93
+ json_output_embedding = instructor_model.predict(
94
  query_embedding_instruction,
95
  query_text,
96
  api_name="/predict",
97
  )
98
 
99
+ json_file = open(json_output_embedding, "r")
100
+ json_dict = json.load(json_file)
101
+ dense_embedding = json_dict["data"]
102
+
103
+ #dense_embedding_arr = np.array(
104
+ # literal_eval(dense_embedding_output)[0], dtype=np.float64
105
+ #)
106
+ #dense_embedding = dense_embedding_arr.tolist()
107
+ #print(type(dense_embedding[2]))
108
  # dense_embedding = [float(x) for x in dense_embedding_output[0]]
109
 
110
  text_embedding_instructions_choice = [
 
156
  unsafe_allow_html=True,
157
  )
158
 
 
 
159
 
160
+ file_text = retrieve_transcript()
161
+ with st.expander("See Transcript"):
162
+ st.subheader("AMD Q1 2020 Earnings Call Transcript:")
163
+ stx.scrollableTextbox(
164
+ file_text, height=700, border=False, fontFamily="Helvetica"
165
+ )