awinml commited on
Commit
5ff711c
·
1 Parent(s): f0211bc

Upload 6 files

Browse files
Files changed (2) hide show
  1. app.py +3 -3
  2. utils/retriever.py +1 -1
app.py CHANGED
@@ -38,7 +38,7 @@ data = get_data()
38
 
39
  col1, col2 = st.columns([3, 3], gap="medium")
40
 
41
- instructor_model = get_instructor_embedding_model()
42
  instructor_model_api = get_instructor_embedding_model_api()
43
 
44
 
@@ -105,7 +105,7 @@ dense_array = np.array(json_dict["data"], dtype=np.float64)
105
  dense_embedding_api = dense_array.tolist()
106
 
107
 
108
- dense_embedding = instructor_model.encode([[query_embedding_instruction, query_text]]).tolist()
109
 
110
 
111
  text_embedding_instructions_choice = [
@@ -144,7 +144,7 @@ with col2:
144
  pinecone_index = pinecone.Index(pinecone_index_name)
145
 
146
  matches = query_pinecone(
147
- dense_vec=dense_embedding, top_k=num_results, index=pinecone_index, indices=indices
148
  )
149
  context = format_query(matches)
150
  output_text = format_context(context)
 
38
 
39
  col1, col2 = st.columns([3, 3], gap="medium")
40
 
41
+ #instructor_model = get_instructor_embedding_model()
42
  instructor_model_api = get_instructor_embedding_model_api()
43
 
44
 
 
105
  dense_embedding_api = dense_array.tolist()
106
 
107
 
108
+ #dense_embedding = instructor_model.encode([[query_embedding_instruction, query_text]]).tolist()
109
 
110
 
111
  text_embedding_instructions_choice = [
 
144
  pinecone_index = pinecone.Index(pinecone_index_name)
145
 
146
  matches = query_pinecone(
147
+ dense_vec=dense_embedding_api, top_k=num_results, index=pinecone_index, indices=indices
148
  )
149
  context = format_query(matches)
150
  output_text = format_context(context)
utils/retriever.py CHANGED
@@ -30,7 +30,7 @@ def format_query(query_results):
30
  def format_context(context):
31
  output_text = []
32
  for text, score in context:
33
- output_text.append(f"Text: {text}\nCosine Similarity: {score}")
34
  return output_text
35
 
36
 
 
30
  def format_context(context):
31
  output_text = []
32
  for text, score in context:
33
+ output_text.append(f"Text: {text}\n\nCosine Similarity: {score}")
34
  return output_text
35
 
36