huntingcarlisle commited on
Commit
6aead1e
·
1 Parent(s): 499bb5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -58
app.py CHANGED
@@ -45,7 +45,7 @@ st.markdown(input_field_style, unsafe_allow_html=True)
45
 
46
 
47
  # Creating Tabs
48
- tab1, tab2 = st.tabs(["Image Generation", "Text Generation"])
49
 
50
  with tab1:
51
  # Create two columns for layout
@@ -123,63 +123,9 @@ with tab1:
123
  with tab2:
124
  # ===========
125
  # Define Streamlit UI elements
126
- st.title('Stable Diffusion XL Image Generation')
127
-
128
-
129
-
130
- prompt = st.text_area("Enter your prompt:",
131
- "Raccoons astronaut in space, sci-fi, future, cold color palette, muted colors, detailed, 8k")
132
-
133
- # Number of inference steps
134
- num_inference_steps = st.slider("Number of Inference Steps",
135
- min_value=1,
136
- max_value=100,
137
- value=40,
138
- help="More steps might improve quality, with diminishing marginal returns. 30-50 seems best, but your mileage may vary.")
139
-
140
- # Create an expandable section for optional parameters
141
- with st.expander("Optional Parameters"):
142
- # Random seed input
143
- seed = st.number_input("Random seed",
144
- value=42,
145
- help="Set to the same value to generate the same image if other inputs are the same, change to generate a different image for same inputs.")
146
-
147
- # Negative prompt input
148
- negative_prompt = st.text_area("Enter your negative prompt:",
149
- "anime, cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry")
150
-
151
-
152
-
153
-
154
-
155
-
156
-
157
- if st.button('Generate Image:'):
158
- with st.spinner(f'Generating Image with {num_inference_steps} iterations'):
159
- # ===============
160
- # Example input data
161
- prompt_input = {
162
- "prompt": prompt,
163
- "parameters": {
164
- "num_inference_steps": num_inference_steps,
165
- "seed": seed,
166
- "negative_prompt": negative_prompt
167
- }
168
- }
169
-
170
- # Make API request
171
- response = requests.post(api_url, json=prompt_input)
172
-
173
- # Process and display the response
174
- if response.status_code == 200:
175
- result = response.json()
176
- # st.success(f"Prediction result: {result}")
177
- image2 = display_image(decode_base64_image(result["generated_images"][0]))
178
- st.header("SDXL Base")
179
- st.image(image2,
180
- caption=f"SDXL Base, {num_inference_steps} iterations")
181
- else:
182
- st.error(f"Error: {response.text}")
183
 
184
 
185
 
 
45
 
46
 
47
  # Creating Tabs
48
+ tab1, tab2 = st.tabs(["Image Generation", "Architecture"])
49
 
50
  with tab1:
51
  # Create two columns for layout
 
123
  with tab2:
124
  # ===========
125
  # Define Streamlit UI elements
126
+ st.title('Architecture')
127
+ st.image('./architecture.png', caption=f"Application Architecture")
128
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
 
131