Spaces:
Running
Running
Alex Hortua
commited on
Commit
Β·
b4454fe
1
Parent(s):
629cc05
Allowing user to select the image size
Browse files- public/images/backgrounds/{campus_sbs.png β a.png} +0 -0
- public/images/backgrounds/{downtownsbs.png β b.png} +0 -0
- public/images/backgrounds/{sbs_neu.png β c.png} +0 -0
- public/images/backgrounds/{side_by_side_steam_clock.png β d.png} +0 -0
- public/images/backgrounds/{spatial_sbs_2024-10-10_21-57-07-266Z.png β e.png} +0 -0
- public/images/backgrounds/{spatial_sbs_2025-03-14_16-41-24-438Z.png β f.png} +0 -0
- public/images/backgrounds/{unique.png β g.png} +0 -0
- public/images/people/{pexels-justin-shaifer-501272-1222271.jpg β a.jpg} +2 -2
- public/images/people/{pexels-olly-774909.jpg β b.jpg} +2 -2
- public/images/people/{pexels-olly-846741.jpg β c.jpg} +2 -2
- public/images/people/{pexels-thgusstavo-1933873.jpg β d.png} +2 -2
- public/images/people/{pexels-chetanvlad-2923156.jpg β e.jpg} +0 -0
- public/images/people/{pexels-goodcitizen-2072453.jpg β f.jpg} +0 -0
- public/images/people/g.jpeg +0 -0
- src/app.py +36 -14
- src/testing.py +21 -15
- src/utils.py +58 -0
public/images/backgrounds/{campus_sbs.png β a.png}
RENAMED
File without changes
|
public/images/backgrounds/{downtownsbs.png β b.png}
RENAMED
File without changes
|
public/images/backgrounds/{sbs_neu.png β c.png}
RENAMED
File without changes
|
public/images/backgrounds/{side_by_side_steam_clock.png β d.png}
RENAMED
File without changes
|
public/images/backgrounds/{spatial_sbs_2024-10-10_21-57-07-266Z.png β e.png}
RENAMED
File without changes
|
public/images/backgrounds/{spatial_sbs_2025-03-14_16-41-24-438Z.png β f.png}
RENAMED
File without changes
|
public/images/backgrounds/{unique.png β g.png}
RENAMED
File without changes
|
public/images/people/{pexels-justin-shaifer-501272-1222271.jpg β a.jpg}
RENAMED
File without changes
|
public/images/people/{pexels-olly-774909.jpg β b.jpg}
RENAMED
File without changes
|
public/images/people/{pexels-olly-846741.jpg β c.jpg}
RENAMED
File without changes
|
public/images/people/{pexels-thgusstavo-1933873.jpg β d.png}
RENAMED
File without changes
|
public/images/people/{pexels-chetanvlad-2923156.jpg β e.jpg}
RENAMED
File without changes
|
public/images/people/{pexels-goodcitizen-2072453.jpg β f.jpg}
RENAMED
File without changes
|
public/images/people/g.jpeg
ADDED
![]() |
src/app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
-
from utils import load_model, segment_person, resize_image, split_stereo_image
|
5 |
from testing import get_image_names
|
6 |
# Load model and processor once
|
7 |
processor, model = load_model()
|
@@ -10,32 +10,55 @@ processor, model = load_model()
|
|
10 |
default_bg = Image.new("RGB", (512, 512), color=(95, 147, 89))
|
11 |
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, person_size=100):
|
17 |
# Resize images to match
|
18 |
-
image = resize_image(person_img, person_size)
|
19 |
-
background_img = background_img if background_img is not None else default_bg
|
20 |
|
|
|
21 |
|
22 |
# Split background image into left and right halves
|
23 |
leftBackground, rightBackground = split_stereo_image(Image.fromarray(background_img))
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
-
image = Image.fromarray(np.array(image)).resize((leftBackground.shape[1], leftBackground.shape[0]))
|
29 |
# Step 1: Segment person
|
30 |
mask = segment_person(image, processor, model)
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
leftBackground_np = np.array(leftBackground)
|
35 |
rightBackground_np = np.array(rightBackground)
|
36 |
|
37 |
-
|
38 |
-
person_only = image_np * mask
|
39 |
leftBackground_only = leftBackground_np * (1 - mask)
|
40 |
rightBackground_only = rightBackground_np * (1 - mask)
|
41 |
|
@@ -43,10 +66,9 @@ def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, perso
|
|
43 |
person_left = np.roll(person_only, shift=-shift_pixels, axis=1)
|
44 |
person_right = np.roll(person_only, shift=shift_pixels, axis=1)
|
45 |
|
46 |
-
|
47 |
left_eye = np.clip(person_right + leftBackground_only, 0, 255).astype(np.uint8)
|
48 |
right_eye = np.clip(person_left + rightBackground_only, 0, 255).astype(np.uint8)
|
49 |
-
person_segmentation = np.clip(person_only, 0, 255).astype(np.uint8)
|
50 |
|
51 |
# --- Combine left and right images side by side ---
|
52 |
stereo_pair = np.concatenate([left_eye, right_eye], axis=1)
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
+
from utils import load_model, segment_person, resize_image, split_stereo_image,resize_image_to_width, resize_mask, resize_images
|
5 |
from testing import get_image_names
|
6 |
# Load model and processor once
|
7 |
processor, model = load_model()
|
|
|
10 |
default_bg = Image.new("RGB", (512, 512), color=(95, 147, 89))
|
11 |
|
12 |
|
|
|
|
|
|
|
13 |
def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, person_size=100):
|
14 |
# Resize images to match
|
|
|
|
|
15 |
|
16 |
+
background_img = background_img if background_img is not None else default_bg
|
17 |
|
18 |
# Split background image into left and right halves
|
19 |
leftBackground, rightBackground = split_stereo_image(Image.fromarray(background_img))
|
20 |
|
21 |
+
## Match person image to background image width
|
22 |
+
image = resize_image_to_width(person_img, leftBackground)
|
23 |
|
|
|
|
|
24 |
# Step 1: Segment person
|
25 |
mask = segment_person(image, processor, model)
|
26 |
|
27 |
+
# Resize mask based on person_size percentage
|
28 |
+
mask = resize_mask(person_size, mask)
|
29 |
+
|
30 |
+
# Resize image based on person_size percentage
|
31 |
+
image_np = resize_images(image, person_size)
|
32 |
+
|
33 |
+
# Apply mask to image
|
34 |
+
person_only = image_np * mask
|
35 |
+
person_segmentation = np.clip(person_only, 0, 255).astype(np.uint8)
|
36 |
+
|
37 |
+
# Resize mask and person_only to match background dimensions while preserving content
|
38 |
+
target_height, target_width = leftBackground.shape[:2]
|
39 |
+
current_height, current_width = mask.shape[:2]
|
40 |
+
|
41 |
+
# Calculate padding
|
42 |
+
pad_top = max(0, (target_height - current_height) // 2)
|
43 |
+
pad_bottom = max(0, target_height - current_height - pad_top)
|
44 |
+
pad_left = max(0, (target_width - current_width) // 2)
|
45 |
+
pad_right = max(0, target_width - current_width - pad_left)
|
46 |
+
|
47 |
+
# Pad mask and person_only arrays
|
48 |
+
mask = np.pad(mask, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')
|
49 |
+
person_only = np.pad(person_segmentation, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')
|
50 |
+
|
51 |
+
|
52 |
+
# CROP MASK TO MATCH BACKGROUND DIMENSIONS FROM CENTER OF BACKGROUND
|
53 |
+
if(mask.shape[0] > target_height or mask.shape[1] > target_width):
|
54 |
+
mask = mask[mask.shape[0]//2-target_height//2:mask.shape[0]//2+target_height//2, mask.shape[1]//2-target_width//2:mask.shape[1]//2+target_width//2, :]
|
55 |
+
person_only = person_only[person_only.shape[0]//2-target_height//2:person_only.shape[0]//2+target_height//2, person_only.shape[1]//2-target_width//2:person_only.shape[1]//2+target_width//2, :]
|
56 |
|
57 |
+
# Convert background images to numpy arrays
|
58 |
leftBackground_np = np.array(leftBackground)
|
59 |
rightBackground_np = np.array(rightBackground)
|
60 |
|
61 |
+
# Apply mask to background images
|
|
|
62 |
leftBackground_only = leftBackground_np * (1 - mask)
|
63 |
rightBackground_only = rightBackground_np * (1 - mask)
|
64 |
|
|
|
66 |
person_left = np.roll(person_only, shift=-shift_pixels, axis=1)
|
67 |
person_right = np.roll(person_only, shift=shift_pixels, axis=1)
|
68 |
|
69 |
+
|
70 |
left_eye = np.clip(person_right + leftBackground_only, 0, 255).astype(np.uint8)
|
71 |
right_eye = np.clip(person_left + rightBackground_only, 0, 255).astype(np.uint8)
|
|
|
72 |
|
73 |
# --- Combine left and right images side by side ---
|
74 |
stereo_pair = np.concatenate([left_eye, right_eye], axis=1)
|
src/testing.py
CHANGED
@@ -3,27 +3,33 @@ import os
|
|
3 |
import random
|
4 |
|
5 |
def get_image_names():
|
6 |
-
# Get background images
|
7 |
-
background_dir = "public/images/backgrounds"
|
8 |
-
background_images = [f for f in os.listdir(background_dir) if f.endswith(('.jpg', '.jpeg', '.png'))]
|
9 |
-
|
10 |
# Get people images
|
11 |
people_dir = "public/images/people"
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
generate_testing_list = []
|
16 |
|
17 |
-
random.shuffle(background_images)
|
18 |
-
random.shuffle(people_images)
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
for background in background_images:
|
24 |
-
person = people_images[random.randint(0, total_length - 1)]
|
25 |
-
generate_testing_list.append(list(( os.path.join(people_dir, person), os.path.join(background_dir, background), 10, 100)))
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
return generate_testing_list
|
29 |
|
|
|
3 |
import random
|
4 |
|
5 |
def get_image_names():
|
|
|
|
|
|
|
|
|
6 |
# Get people images
|
7 |
people_dir = "public/images/people"
|
8 |
+
# Get background images
|
9 |
+
background_dir = "public/images/backgrounds"
|
|
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
+
data = [
|
13 |
+
['e.jpg', 'e.png', 10, 60],
|
14 |
+
['f.jpg', 'f.png', 10, 60],
|
15 |
+
['g.jpeg', 'g.png', 10, 40],
|
16 |
+
['a.jpg', 'a.png', 10, 130],
|
17 |
+
['b.jpg', 'b.png', 10, 40],
|
18 |
+
['c.jpg', 'c.png', 10, 60],
|
19 |
+
['d.png', 'd.png', 10, 50]
|
20 |
+
]
|
21 |
|
22 |
+
generate_testing_list = []
|
|
|
|
|
|
|
23 |
|
24 |
+
for i in range(len(data)):
|
25 |
+
generate_testing_list.append(
|
26 |
+
list((
|
27 |
+
os.path.join(people_dir, data[i][0]),
|
28 |
+
os.path.join(background_dir, data[i][1]),
|
29 |
+
data[i][2],
|
30 |
+
data[i][3]
|
31 |
+
))
|
32 |
+
)
|
33 |
|
34 |
return generate_testing_list
|
35 |
|
src/utils.py
CHANGED
@@ -94,3 +94,61 @@ def split_stereo_image(image):
|
|
94 |
else:
|
95 |
return image, resize_image(image, 99)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
else:
|
95 |
return image, resize_image(image, 99)
|
96 |
|
97 |
+
def resize_image_to_width(person_img, background_img):
|
98 |
+
# Resize image to match background dimensions
|
99 |
+
if (background_img.shape[1] > background_img.shape[0]):
|
100 |
+
width = background_img.shape[1]
|
101 |
+
img_array = np.array(person_img)
|
102 |
+
height = int(width * img_array.shape[0] / img_array.shape[1])
|
103 |
+
person_img = Image.fromarray(img_array).resize((width, height))
|
104 |
+
person_img = np.array(person_img)
|
105 |
+
image = Image.fromarray(person_img)
|
106 |
+
else:
|
107 |
+
height = background_img.shape[0]
|
108 |
+
img_array = np.array(person_img)
|
109 |
+
width = int(height * img_array.shape[1] / img_array.shape[0])
|
110 |
+
person_img = Image.fromarray(img_array).resize((width, height))
|
111 |
+
person_img = np.array(person_img)
|
112 |
+
image = Image.fromarray(person_img)
|
113 |
+
|
114 |
+
|
115 |
+
return image
|
116 |
+
|
117 |
+
def resize_mask(person_size, mask):
|
118 |
+
|
119 |
+
scale_factor = person_size / 100.0
|
120 |
+
mask_height, mask_width = mask.shape[:2]
|
121 |
+
new_height = int(mask_height * scale_factor)
|
122 |
+
new_width = int(mask_width * scale_factor)
|
123 |
+
|
124 |
+
# Convert mask to PIL Image for resizing
|
125 |
+
mask_image = Image.fromarray((mask * 255).astype(np.uint8))
|
126 |
+
resized_mask = mask_image.resize((new_width, new_height))
|
127 |
+
|
128 |
+
# Convert back to numpy and normalize to 0-1
|
129 |
+
mask = np.array(resized_mask).astype(np.float32) / 255.0
|
130 |
+
|
131 |
+
# Add third channel dimension back if needed
|
132 |
+
if len(mask.shape) == 2:
|
133 |
+
mask = np.stack([mask] * 3, axis=-1)
|
134 |
+
|
135 |
+
return mask
|
136 |
+
|
137 |
+
def resize_images(image, person_size):
|
138 |
+
image_np = np.array(image)
|
139 |
+
# Resize image based on person_size percentage
|
140 |
+
|
141 |
+
scale_factor = person_size / 100.0
|
142 |
+
img_height, img_width = image_np.shape[:2]
|
143 |
+
new_height = int(img_height * scale_factor)
|
144 |
+
new_width = int(img_width * scale_factor)
|
145 |
+
|
146 |
+
# Convert image to PIL Image for resizing
|
147 |
+
image_pil = Image.fromarray(image_np)
|
148 |
+
resized_image = image_pil.resize((new_width, new_height))
|
149 |
+
|
150 |
+
# Convert back to numpy
|
151 |
+
image = resized_image
|
152 |
+
image_np = np.array(image)
|
153 |
+
|
154 |
+
return image_np
|