Alex Hortua commited on
Commit
b4454fe
Β·
1 Parent(s): 629cc05

Allowing user to select the image size

Browse files
public/images/backgrounds/{campus_sbs.png β†’ a.png} RENAMED
File without changes
public/images/backgrounds/{downtownsbs.png β†’ b.png} RENAMED
File without changes
public/images/backgrounds/{sbs_neu.png β†’ c.png} RENAMED
File without changes
public/images/backgrounds/{side_by_side_steam_clock.png β†’ d.png} RENAMED
File without changes
public/images/backgrounds/{spatial_sbs_2024-10-10_21-57-07-266Z.png β†’ e.png} RENAMED
File without changes
public/images/backgrounds/{spatial_sbs_2025-03-14_16-41-24-438Z.png β†’ f.png} RENAMED
File without changes
public/images/backgrounds/{unique.png β†’ g.png} RENAMED
File without changes
public/images/people/{pexels-justin-shaifer-501272-1222271.jpg β†’ a.jpg} RENAMED
File without changes
public/images/people/{pexels-olly-774909.jpg β†’ b.jpg} RENAMED
File without changes
public/images/people/{pexels-olly-846741.jpg β†’ c.jpg} RENAMED
File without changes
public/images/people/{pexels-thgusstavo-1933873.jpg β†’ d.png} RENAMED
File without changes
public/images/people/{pexels-chetanvlad-2923156.jpg β†’ e.jpg} RENAMED
File without changes
public/images/people/{pexels-goodcitizen-2072453.jpg β†’ f.jpg} RENAMED
File without changes
public/images/people/g.jpeg ADDED
src/app.py CHANGED
@@ -1,7 +1,7 @@
1
  import gradio as gr
2
  import numpy as np
3
  from PIL import Image
4
- from utils import load_model, segment_person, resize_image, split_stereo_image
5
  from testing import get_image_names
6
  # Load model and processor once
7
  processor, model = load_model()
@@ -10,32 +10,55 @@ processor, model = load_model()
10
  default_bg = Image.new("RGB", (512, 512), color=(95, 147, 89))
11
 
12
 
13
-
14
-
15
-
16
  def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, person_size=100):
17
  # Resize images to match
18
- image = resize_image(person_img, person_size)
19
- background_img = background_img if background_img is not None else default_bg
20
 
 
21
 
22
  # Split background image into left and right halves
23
  leftBackground, rightBackground = split_stereo_image(Image.fromarray(background_img))
24
 
25
- # Resize image to match background dimensions
 
26
 
27
-
28
- image = Image.fromarray(np.array(image)).resize((leftBackground.shape[1], leftBackground.shape[0]))
29
  # Step 1: Segment person
30
  mask = segment_person(image, processor, model)
31
 
32
- image_np = np.array(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
 
34
  leftBackground_np = np.array(leftBackground)
35
  rightBackground_np = np.array(rightBackground)
36
 
37
-
38
- person_only = image_np * mask
39
  leftBackground_only = leftBackground_np * (1 - mask)
40
  rightBackground_only = rightBackground_np * (1 - mask)
41
 
@@ -43,10 +66,9 @@ def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, perso
43
  person_left = np.roll(person_only, shift=-shift_pixels, axis=1)
44
  person_right = np.roll(person_only, shift=shift_pixels, axis=1)
45
 
46
-
47
  left_eye = np.clip(person_right + leftBackground_only, 0, 255).astype(np.uint8)
48
  right_eye = np.clip(person_left + rightBackground_only, 0, 255).astype(np.uint8)
49
- person_segmentation = np.clip(person_only, 0, 255).astype(np.uint8)
50
 
51
  # --- Combine left and right images side by side ---
52
  stereo_pair = np.concatenate([left_eye, right_eye], axis=1)
 
1
  import gradio as gr
2
  import numpy as np
3
  from PIL import Image
4
+ from utils import load_model, segment_person, resize_image, split_stereo_image,resize_image_to_width, resize_mask, resize_images
5
  from testing import get_image_names
6
  # Load model and processor once
7
  processor, model = load_model()
 
10
  default_bg = Image.new("RGB", (512, 512), color=(95, 147, 89))
11
 
12
 
 
 
 
13
  def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, person_size=100):
14
  # Resize images to match
 
 
15
 
16
+ background_img = background_img if background_img is not None else default_bg
17
 
18
  # Split background image into left and right halves
19
  leftBackground, rightBackground = split_stereo_image(Image.fromarray(background_img))
20
 
21
+ ## Match person image to background image width
22
+ image = resize_image_to_width(person_img, leftBackground)
23
 
 
 
24
  # Step 1: Segment person
25
  mask = segment_person(image, processor, model)
26
 
27
+ # Resize mask based on person_size percentage
28
+ mask = resize_mask(person_size, mask)
29
+
30
+ # Resize image based on person_size percentage
31
+ image_np = resize_images(image, person_size)
32
+
33
+ # Apply mask to image
34
+ person_only = image_np * mask
35
+ person_segmentation = np.clip(person_only, 0, 255).astype(np.uint8)
36
+
37
+ # Resize mask and person_only to match background dimensions while preserving content
38
+ target_height, target_width = leftBackground.shape[:2]
39
+ current_height, current_width = mask.shape[:2]
40
+
41
+ # Calculate padding
42
+ pad_top = max(0, (target_height - current_height) // 2)
43
+ pad_bottom = max(0, target_height - current_height - pad_top)
44
+ pad_left = max(0, (target_width - current_width) // 2)
45
+ pad_right = max(0, target_width - current_width - pad_left)
46
+
47
+ # Pad mask and person_only arrays
48
+ mask = np.pad(mask, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')
49
+ person_only = np.pad(person_segmentation, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant')
50
+
51
+
52
+ # CROP MASK TO MATCH BACKGROUND DIMENSIONS FROM CENTER OF BACKGROUND
53
+ if(mask.shape[0] > target_height or mask.shape[1] > target_width):
54
+ mask = mask[mask.shape[0]//2-target_height//2:mask.shape[0]//2+target_height//2, mask.shape[1]//2-target_width//2:mask.shape[1]//2+target_width//2, :]
55
+ person_only = person_only[person_only.shape[0]//2-target_height//2:person_only.shape[0]//2+target_height//2, person_only.shape[1]//2-target_width//2:person_only.shape[1]//2+target_width//2, :]
56
 
57
+ # Convert background images to numpy arrays
58
  leftBackground_np = np.array(leftBackground)
59
  rightBackground_np = np.array(rightBackground)
60
 
61
+ # Apply mask to background images
 
62
  leftBackground_only = leftBackground_np * (1 - mask)
63
  rightBackground_only = rightBackground_np * (1 - mask)
64
 
 
66
  person_left = np.roll(person_only, shift=-shift_pixels, axis=1)
67
  person_right = np.roll(person_only, shift=shift_pixels, axis=1)
68
 
69
+
70
  left_eye = np.clip(person_right + leftBackground_only, 0, 255).astype(np.uint8)
71
  right_eye = np.clip(person_left + rightBackground_only, 0, 255).astype(np.uint8)
 
72
 
73
  # --- Combine left and right images side by side ---
74
  stereo_pair = np.concatenate([left_eye, right_eye], axis=1)
src/testing.py CHANGED
@@ -3,27 +3,33 @@ import os
3
  import random
4
 
5
  def get_image_names():
6
- # Get background images
7
- background_dir = "public/images/backgrounds"
8
- background_images = [f for f in os.listdir(background_dir) if f.endswith(('.jpg', '.jpeg', '.png'))]
9
-
10
  # Get people images
11
  people_dir = "public/images/people"
12
- people_images = [f for f in os.listdir(people_dir) if f.endswith(('.jpg', '.jpeg', '.png'))]
13
-
14
-
15
- generate_testing_list = []
16
 
17
- random.shuffle(background_images)
18
- random.shuffle(people_images)
19
 
20
- total_length = len(people_images)
 
 
 
 
 
 
 
 
21
 
22
- # Get 10 random pairs
23
- for background in background_images:
24
- person = people_images[random.randint(0, total_length - 1)]
25
- generate_testing_list.append(list(( os.path.join(people_dir, person), os.path.join(background_dir, background), 10, 100)))
26
 
 
 
 
 
 
 
 
 
 
27
 
28
  return generate_testing_list
29
 
 
3
  import random
4
 
5
  def get_image_names():
 
 
 
 
6
  # Get people images
7
  people_dir = "public/images/people"
8
+ # Get background images
9
+ background_dir = "public/images/backgrounds"
 
 
10
 
 
 
11
 
12
+ data = [
13
+ ['e.jpg', 'e.png', 10, 60],
14
+ ['f.jpg', 'f.png', 10, 60],
15
+ ['g.jpeg', 'g.png', 10, 40],
16
+ ['a.jpg', 'a.png', 10, 130],
17
+ ['b.jpg', 'b.png', 10, 40],
18
+ ['c.jpg', 'c.png', 10, 60],
19
+ ['d.png', 'd.png', 10, 50]
20
+ ]
21
 
22
+ generate_testing_list = []
 
 
 
23
 
24
+ for i in range(len(data)):
25
+ generate_testing_list.append(
26
+ list((
27
+ os.path.join(people_dir, data[i][0]),
28
+ os.path.join(background_dir, data[i][1]),
29
+ data[i][2],
30
+ data[i][3]
31
+ ))
32
+ )
33
 
34
  return generate_testing_list
35
 
src/utils.py CHANGED
@@ -94,3 +94,61 @@ def split_stereo_image(image):
94
  else:
95
  return image, resize_image(image, 99)
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  else:
95
  return image, resize_image(image, 99)
96
 
97
+ def resize_image_to_width(person_img, background_img):
98
+ # Resize image to match background dimensions
99
+ if (background_img.shape[1] > background_img.shape[0]):
100
+ width = background_img.shape[1]
101
+ img_array = np.array(person_img)
102
+ height = int(width * img_array.shape[0] / img_array.shape[1])
103
+ person_img = Image.fromarray(img_array).resize((width, height))
104
+ person_img = np.array(person_img)
105
+ image = Image.fromarray(person_img)
106
+ else:
107
+ height = background_img.shape[0]
108
+ img_array = np.array(person_img)
109
+ width = int(height * img_array.shape[1] / img_array.shape[0])
110
+ person_img = Image.fromarray(img_array).resize((width, height))
111
+ person_img = np.array(person_img)
112
+ image = Image.fromarray(person_img)
113
+
114
+
115
+ return image
116
+
117
+ def resize_mask(person_size, mask):
118
+
119
+ scale_factor = person_size / 100.0
120
+ mask_height, mask_width = mask.shape[:2]
121
+ new_height = int(mask_height * scale_factor)
122
+ new_width = int(mask_width * scale_factor)
123
+
124
+ # Convert mask to PIL Image for resizing
125
+ mask_image = Image.fromarray((mask * 255).astype(np.uint8))
126
+ resized_mask = mask_image.resize((new_width, new_height))
127
+
128
+ # Convert back to numpy and normalize to 0-1
129
+ mask = np.array(resized_mask).astype(np.float32) / 255.0
130
+
131
+ # Add third channel dimension back if needed
132
+ if len(mask.shape) == 2:
133
+ mask = np.stack([mask] * 3, axis=-1)
134
+
135
+ return mask
136
+
137
+ def resize_images(image, person_size):
138
+ image_np = np.array(image)
139
+ # Resize image based on person_size percentage
140
+
141
+ scale_factor = person_size / 100.0
142
+ img_height, img_width = image_np.shape[:2]
143
+ new_height = int(img_height * scale_factor)
144
+ new_width = int(img_width * scale_factor)
145
+
146
+ # Convert image to PIL Image for resizing
147
+ image_pil = Image.fromarray(image_np)
148
+ resized_image = image_pil.resize((new_width, new_height))
149
+
150
+ # Convert back to numpy
151
+ image = resized_image
152
+ image_np = np.array(image)
153
+
154
+ return image_np