import gradio as gr import numpy as np from PIL import Image from utils import load_model, segment_person, resize_image, split_stereo_image,resize_image_to_width, resize_mask, resize_images from testing import get_image_names # Load model and processor once processor, model = load_model() # Default background (solid color) default_bg = Image.new("RGB", (512, 512), color=(95, 147, 89)) def generate_3d_outputs(person_img, background_img=None, shift_pixels=10, person_size=100): # Resize images to match background_img = background_img if background_img is not None else default_bg # Split background image into left and right halves leftBackground, rightBackground = split_stereo_image(Image.fromarray(background_img)) ## Match person image to background image width image = resize_image_to_width(person_img, leftBackground) # Step 1: Segment person mask = segment_person(image, processor, model) # Resize mask based on person_size percentage mask = resize_mask(person_size, mask) # Resize image based on person_size percentage image_np = resize_images(image, person_size) # Apply mask to image person_only = image_np * mask person_segmentation = np.clip(person_only, 0, 255).astype(np.uint8) # Resize mask and person_only to match background dimensions while preserving content target_height, target_width = leftBackground.shape[:2] current_height, current_width = mask.shape[:2] # Calculate padding pad_top = max(0, (target_height - current_height) // 2) pad_bottom = max(0, target_height - current_height - pad_top) pad_left = max(0, (target_width - current_width) // 2) pad_right = max(0, target_width - current_width - pad_left) # Pad mask and person_only arrays mask = np.pad(mask, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant') person_only = np.pad(person_segmentation, ((pad_top, pad_bottom), (pad_left, pad_right), (0,0)), mode='constant') # CROP MASK TO MATCH BACKGROUND DIMENSIONS FROM CENTER OF BACKGROUND if(mask.shape[0] > target_height or mask.shape[1] > target_width): mask = mask[mask.shape[0]//2-target_height//2:mask.shape[0]//2+target_height//2, mask.shape[1]//2-target_width//2:mask.shape[1]//2+target_width//2, :] person_only = person_only[person_only.shape[0]//2-target_height//2:person_only.shape[0]//2+target_height//2, person_only.shape[1]//2-target_width//2:person_only.shape[1]//2+target_width//2, :] # Convert background images to numpy arrays leftBackground_np = np.array(leftBackground) rightBackground_np = np.array(rightBackground) # Apply mask to background images leftBackground_only = leftBackground_np * (1 - mask) rightBackground_only = rightBackground_np * (1 - mask) # Step 2: Create stereo pair person_left = np.roll(person_only, shift=-shift_pixels, axis=1) person_right = np.roll(person_only, shift=shift_pixels, axis=1) left_eye = np.clip(person_right + leftBackground_only, 0, 255).astype(np.uint8) right_eye = np.clip(person_left + rightBackground_only, 0, 255).astype(np.uint8) # --- Combine left and right images side by side --- stereo_pair = np.concatenate([left_eye, right_eye], axis=1) stereo_image = Image.fromarray(stereo_pair) # Step 3: Create anaglyph anaglyph = np.stack([ left_eye[:, :, 0], # Red from left right_eye[:, :, 1], # Green from right right_eye[:, :, 2] # Blue from right ], axis=2) anaglyph_img = Image.fromarray(anaglyph.astype(np.uint8)) left_img = Image.fromarray(left_eye) right_img = Image.fromarray(right_eye) return person_segmentation, stereo_image, anaglyph_img # Gradio Interface demo = gr.Interface( fn=generate_3d_outputs, inputs=[ gr.Image(label="Person Image"), gr.Image(label="Optional Background Image"), gr.Slider(minimum=0, maximum=20, step=1, value=10, label="interaxial distance"), gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Person Size %"), ], outputs=[ gr.Image(label="segmentation mask"), gr.Image(label="Stereo_pair"), gr.Image(label="3D Anaglyph Image") ], examples= get_image_names(), title="3D Person Segmentation Viewer", description="Upload a person photo and optionally a background image. Outputs anaglyph and stereo views." ) if __name__ == "__main__": demo.launch()