File size: 6,189 Bytes
03d828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

from google.cloud import storage
#storage_client = storage.Client()
storage_client = storage.Client.create_anonymous_client()
bucket_name = "docs-axio-clara"


from langchain_community.vectorstores import Annoy

from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from climateqa.engine.embeddings import get_embeddings_function
embeddings_function = get_embeddings_function()


import os
import pdfplumber

def get_PDF_Names_from_GCP():

    listName = []
    # Récupération des fichier depuis GCP storage
    blobs = storage_client.list_blobs(bucket_name, prefix='sources/')
    for blob in blobs:
        listName.append(blob.name)
    return listName

def get_PDF_from_GCP(folder_path, pdf_folder="./PDF"):

    # Récupération des fichier depuis GCP storage
    blobs = storage_client.list_blobs(bucket_name, prefix='sources/')
    for blob in blobs:

        print( "\n"+blob.name+":")
        print( " <- Téléchargement Depuis GCP")
        blob.download_to_filename(pdf_folder+"/"+blob.name)

        # Extraction des textes dpuis les fichiers PDF
        print(" >>> Extraction PDF")
        for pdf_file in os.listdir(pdf_folder):
            if pdf_file.startswith("."):
                continue
            print(" >  "+pdf_folder+"/"+pdf_file)
            pdf_total_pages = 0
            with pdfplumber.open(pdf_folder+"/"+pdf_file) as pdf:
                pdf_total_pages = len(pdf.pages)
            
            # Fuite mémoire pour les gros fichiers
            # Reouvrir le fichier à chaque N page semble rélgler le problème
            N_page = 300
            page_number = 0
            while page_number < pdf_total_pages:

                print(" -- ouverture du fichier pour "+str(N_page)+ " pages --" )
                with pdfplumber.open(pdf_folder+"/"+pdf_file) as pdf:

                    npage = 0
                    while (npage < N_page and page_number < pdf_total_pages) :

                        print(" >>> "+str(page_number+1))
                        f = open(folder_path+"/"+pdf_file+"..:page:.."+str(page_number+1), "w")
                        for char_pdf in pdf.pages[page_number].chars:
                            f.write(char_pdf["text"])
                        f.close()

                        npage = npage + 1
                        page_number = page_number + 1


        print(" X removing: " + blob.name )
        os.remove(pdf_folder+"/"+blob.name)


def build_vectores_stores(folder_path, pdf_folder="./PDF", vectors_path = "./vectors"):
  
    if os.path.isfile(vectors_path+"/index.annoy"):
        return Annoy.load_local(vectors_path, embeddings_function,allow_dangerous_deserialization=True)
    
    try:
        os.mkdir(vectors_path)
    except:
        pass

    try:
        # Récupération des fichier depuis GCP storage
        blobs = storage_client.list_blobs(bucket_name, prefix='testvectors/')
        for blob in blobs:

            print( "\n"+blob.name.split("/")[-1]+":")
            print( " <- Téléchargement Depuis GCP")
            blob.download_to_filename(vectors_path+"/"+blob.name.split("/")[-1])
    except:
        pass

    # TODO A FUNCTION FOR THAT TO AVOID CODE DUPLICATION
    if os.path.isfile(vectors_path+"/index.annoy"):
        return Annoy.load_local(vectors_path, embeddings_function,allow_dangerous_deserialization=True)
    
    print("MISSING VECTORS")
    exit(0)
    
#    get_PDF_from_GCP(folder_path, pdf_folder)

#    print(" Vectorisation ...")

#    docs = []
#    vector_store_from_docs = ()  # Créer un nouvel objet Annoy ou utiliser celui déjà initialisé selon votre code existant
#    for filename in os.listdir(folder_path):
#        if filename.startswith("."):
#            continue
#        file_path = os.path.join(folder_path, filename)
#        if os.path.isfile(file_path):
#            loader = TextLoader(file_path)
#            documents = loader.load()
#
#            for doc in documents:
#                if (doc.metadata):
#                    doc.metadata["ax_page"] = doc.metadata['source'].split("..:page:..")[-1]
#                    doc.metadata["ax_name"] = doc.metadata['source'].split("..:page:..")[0].split("/")[-1]
#                    doc.metadata["ax_url"] = "https://storage.googleapis.com/docs-axio-clara/sources/"+doc.metadata["ax_name"]
#
#            text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
#            docs += text_splitter.split_documents(documents)
#    vector_store_from_docs = Annoy.from_documents(docs, embeddings_function)
#    vector_store_from_docs.save_local(vectors_path)
#    return vector_store_from_docs







# Pinecone
# More info at https://docs.pinecone.io/docs/langchain
# And https://python.langchain.com/docs/integrations/vectorstores/pinecone
#import os
#from pinecone import Pinecone
#from langchain_community.vectorstores import Pinecone as PineconeVectorstore

# LOAD ENVIRONMENT VARIABLES
#try:
#    from dotenv import load_dotenv
#    load_dotenv()
#except:
#    pass


#def get_pinecone_vectorstore(embeddings,text_key = "content"):

    # # initialize pinecone
    # pinecone.init(
    #     api_key=os.getenv("PINECONE_API_KEY"),  # find at app.pinecone.io
    #     environment=os.getenv("PINECONE_API_ENVIRONMENT"),  # next to api key in console
    # )

    # index_name = os.getenv("PINECONE_API_INDEX")
    # vectorstore = Pinecone.from_existing_index(index_name, embeddings,text_key = text_key)

    # return vectorstore

#    pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
#    index = pc.Index(os.getenv("PINECONE_API_INDEX"))

#    vectorstore = PineconeVectorstore(
#        index, embeddings, text_key,
#    )
#    return vectorstore



# def get_pinecone_retriever(vectorstore,k = 10,namespace = "vectors",sources = ["IPBES","IPCC"]):

#     assert isinstance(sources,list)

#     # Check if all elements in the list are either IPCC or IPBES
#     filter = {
#         "source": { "$in":sources},
#     }

#     retriever = vectorstore.as_retriever(search_kwargs={
#         "k": k,
#         "namespace":"vectors",
#         "filter":filter
#     })

#     return retriever