axxam-wis-sin / app.py
axxam's picture
Update app.py
715584d verified
raw
history blame
1.33 kB
import gradio as gr
import nemo.collections.asr as nemo_asr
import numpy as np
import torch
# Load the pre-trained Kabyle ASR model
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_kab_conformer_transducer_large")
# Function to transcribe the audio input
def transcribe(audio):
# Print the raw audio input
print(f"Raw audio input: {audio}")
# Audio in Gradio is returned as a tuple (sample_rate, audio_data)
sample_rate, audio_data = audio
# Print to check the types
print(f"Audio data type: {type(audio_data)}")
print(f"Sample rate type: {type(sample_rate)}")
# Ensure the audio data is in numpy array format
if isinstance(audio_data, np.ndarray):
# If it's already numpy, we pass it directly
audio_data = np.array(audio_data)
elif isinstance(audio_data, torch.Tensor):
# If it's a tensor, convert to numpy array
audio_data = audio_data.numpy()
else:
print("Error: Audio data is neither a numpy array nor a tensor.")
return "Invalid audio format"
# Now transcribe the audio
return asr_model.transcribe([audio_data])
# Create the Gradio interface with audio input and text output
iface = gr.Interface(fn=transcribe, inputs="audio", outputs="text")
# Launch the Gradio interface
iface.launch()