axxam commited on
Commit
4da8f76
·
verified ·
1 Parent(s): 10a369e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -62
app.py CHANGED
@@ -1,10 +1,9 @@
1
  import torch
2
  import gradio as gr
3
- import pytube as pt
4
  from transformers import pipeline
5
 
6
  MODEL_NAME = "BlueRaccoon/whisper-small-kab" # this always needs to stay in line 8 :D sorry for the hackiness
7
- lang = "uz"
8
 
9
  device = 0 if torch.cuda.is_available() else "cpu"
10
  pipe = pipeline(
@@ -17,77 +16,30 @@ pipe = pipeline(
17
  pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
18
 
19
 
20
- def transcribe(microphone, file_upload):
21
- warn_output = ""
22
- if (microphone is not None) and (file_upload is not None):
23
- warn_output = (
24
- "WARNING: You've uploaded an audio file and used the microphone. "
25
- "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
26
- )
27
-
28
- elif (microphone is None) and (file_upload is None):
29
- return "ERROR: You have to either use the microphone or upload an audio file"
30
-
31
- file = microphone if microphone is not None else file_upload
32
-
33
- text = pipe(file)["text"]
34
-
35
- return warn_output + text
36
-
37
-
38
- def _return_yt_html_embed(yt_url):
39
- video_id = yt_url.split("?v=")[-1]
40
- HTML_str = (
41
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
42
- " </center>"
43
- )
44
- return HTML_str
45
-
46
-
47
- def yt_transcribe(yt_url):
48
- yt = pt.YouTube(yt_url)
49
- html_embed_str = _return_yt_html_embed(yt_url)
50
- stream = yt.streams.filter(only_audio=True)[0]
51
- stream.download(filename="audio.mp3")
52
 
53
- text = pipe("audio.mp3")["text"]
54
-
55
- return html_embed_str, text
56
 
57
 
58
  with gr.Blocks() as demo:
59
- with gr.Tab("Transcribe Audio"):
60
  gr.Markdown(
61
  f"""
62
- # Whisper Demo: Transcribe Audio
63
- Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the fine-tuned
64
- checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files
65
- of arbitrary length.
66
  """
67
  )
68
- # Inputs for microphone recording or file upload
69
- microphone_input = gr.Audio(type="filepath", label="Record or Upload Audio")
70
- file_upload_input = gr.Audio(type="filepath", label="Upload Audio File (Optional)")
71
  gr.Interface(
72
  fn=transcribe,
73
- inputs=[microphone_input, file_upload_input],
74
  outputs=gr.Textbox(label="Transcription"),
75
  )
76
 
77
- with gr.Tab("Transcribe YouTube"):
78
- gr.Markdown(
79
- f"""
80
- # Whisper Demo: Transcribe YouTube
81
- Transcribe long-form YouTube videos with the click of a button! Demo uses the fine-tuned checkpoint
82
- [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of
83
- arbitrary length.
84
- """
85
- )
86
- yt_url_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
87
- gr.Interface(
88
- fn=yt_transcribe,
89
- inputs=[yt_url_input],
90
- outputs=[gr.HTML(label="YouTube Video"), gr.Textbox(label="Transcription")],
91
- )
92
-
93
  demo.launch()
 
1
  import torch
2
  import gradio as gr
 
3
  from transformers import pipeline
4
 
5
  MODEL_NAME = "BlueRaccoon/whisper-small-kab" # this always needs to stay in line 8 :D sorry for the hackiness
6
+ lang = "kab" # Language updated to Kabyle
7
 
8
  device = 0 if torch.cuda.is_available() else "cpu"
9
  pipe = pipeline(
 
16
  pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
17
 
18
 
19
+ def transcribe(microphone):
20
+ if microphone is None:
21
+ return "ERROR: You need to record or upload an audio file."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ text = pipe(microphone)["text"]
24
+ return text
 
25
 
26
 
27
  with gr.Blocks() as demo:
28
+ with gr.Tab("Transcribe Kabyle Audio"):
29
  gr.Markdown(
30
  f"""
31
+ # Kabyle Whisper Demo: Transcribe Audio
32
+ Transcribe Kabyle audio recorded from the microphone or uploaded as a file. This demo uses the fine-tuned
33
+ checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe Kabyle audio
34
+ files of arbitrary length.
35
  """
36
  )
37
+ # Input for microphone recording only
38
+ microphone_input = gr.Audio(type="filepath", label="Record or Upload Kabyle Audio")
 
39
  gr.Interface(
40
  fn=transcribe,
41
+ inputs=[microphone_input],
42
  outputs=gr.Textbox(label="Transcription"),
43
  )
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  demo.launch()