Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
import pytube as pt
|
4 |
from transformers import pipeline
|
5 |
|
6 |
MODEL_NAME = "BlueRaccoon/whisper-small-kab" # this always needs to stay in line 8 :D sorry for the hackiness
|
7 |
-
lang = "
|
8 |
|
9 |
device = 0 if torch.cuda.is_available() else "cpu"
|
10 |
pipe = pipeline(
|
@@ -17,77 +16,30 @@ pipe = pipeline(
|
|
17 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
18 |
|
19 |
|
20 |
-
def transcribe(microphone
|
21 |
-
|
22 |
-
|
23 |
-
warn_output = (
|
24 |
-
"WARNING: You've uploaded an audio file and used the microphone. "
|
25 |
-
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
26 |
-
)
|
27 |
-
|
28 |
-
elif (microphone is None) and (file_upload is None):
|
29 |
-
return "ERROR: You have to either use the microphone or upload an audio file"
|
30 |
-
|
31 |
-
file = microphone if microphone is not None else file_upload
|
32 |
-
|
33 |
-
text = pipe(file)["text"]
|
34 |
-
|
35 |
-
return warn_output + text
|
36 |
-
|
37 |
-
|
38 |
-
def _return_yt_html_embed(yt_url):
|
39 |
-
video_id = yt_url.split("?v=")[-1]
|
40 |
-
HTML_str = (
|
41 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
42 |
-
" </center>"
|
43 |
-
)
|
44 |
-
return HTML_str
|
45 |
-
|
46 |
-
|
47 |
-
def yt_transcribe(yt_url):
|
48 |
-
yt = pt.YouTube(yt_url)
|
49 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
50 |
-
stream = yt.streams.filter(only_audio=True)[0]
|
51 |
-
stream.download(filename="audio.mp3")
|
52 |
|
53 |
-
text = pipe(
|
54 |
-
|
55 |
-
return html_embed_str, text
|
56 |
|
57 |
|
58 |
with gr.Blocks() as demo:
|
59 |
-
with gr.Tab("Transcribe Audio"):
|
60 |
gr.Markdown(
|
61 |
f"""
|
62 |
-
# Whisper Demo: Transcribe Audio
|
63 |
-
Transcribe
|
64 |
-
checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio
|
65 |
-
of arbitrary length.
|
66 |
"""
|
67 |
)
|
68 |
-
#
|
69 |
-
microphone_input = gr.Audio(type="filepath", label="Record or Upload Audio")
|
70 |
-
file_upload_input = gr.Audio(type="filepath", label="Upload Audio File (Optional)")
|
71 |
gr.Interface(
|
72 |
fn=transcribe,
|
73 |
-
inputs=[microphone_input
|
74 |
outputs=gr.Textbox(label="Transcription"),
|
75 |
)
|
76 |
|
77 |
-
with gr.Tab("Transcribe YouTube"):
|
78 |
-
gr.Markdown(
|
79 |
-
f"""
|
80 |
-
# Whisper Demo: Transcribe YouTube
|
81 |
-
Transcribe long-form YouTube videos with the click of a button! Demo uses the fine-tuned checkpoint
|
82 |
-
[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of
|
83 |
-
arbitrary length.
|
84 |
-
"""
|
85 |
-
)
|
86 |
-
yt_url_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
87 |
-
gr.Interface(
|
88 |
-
fn=yt_transcribe,
|
89 |
-
inputs=[yt_url_input],
|
90 |
-
outputs=[gr.HTML(label="YouTube Video"), gr.Textbox(label="Transcription")],
|
91 |
-
)
|
92 |
-
|
93 |
demo.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
MODEL_NAME = "BlueRaccoon/whisper-small-kab" # this always needs to stay in line 8 :D sorry for the hackiness
|
6 |
+
lang = "kab" # Language updated to Kabyle
|
7 |
|
8 |
device = 0 if torch.cuda.is_available() else "cpu"
|
9 |
pipe = pipeline(
|
|
|
16 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
17 |
|
18 |
|
19 |
+
def transcribe(microphone):
|
20 |
+
if microphone is None:
|
21 |
+
return "ERROR: You need to record or upload an audio file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
text = pipe(microphone)["text"]
|
24 |
+
return text
|
|
|
25 |
|
26 |
|
27 |
with gr.Blocks() as demo:
|
28 |
+
with gr.Tab("Transcribe Kabyle Audio"):
|
29 |
gr.Markdown(
|
30 |
f"""
|
31 |
+
# Kabyle Whisper Demo: Transcribe Audio
|
32 |
+
Transcribe Kabyle audio recorded from the microphone or uploaded as a file. This demo uses the fine-tuned
|
33 |
+
checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe Kabyle audio
|
34 |
+
files of arbitrary length.
|
35 |
"""
|
36 |
)
|
37 |
+
# Input for microphone recording only
|
38 |
+
microphone_input = gr.Audio(type="filepath", label="Record or Upload Kabyle Audio")
|
|
|
39 |
gr.Interface(
|
40 |
fn=transcribe,
|
41 |
+
inputs=[microphone_input],
|
42 |
outputs=gr.Textbox(label="Transcription"),
|
43 |
)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
demo.launch()
|