import torch import gradio as gr from transformers import pipeline MODEL_NAME = "BlueRaccoon/whisper-small-kab" lang = "uz" # Used uz instead of kab device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") def transcribe(microphone): if microphone is None: return "ERROR: You need to record or upload an audio file." text = pipe(microphone)["text"] return text with gr.Blocks() as demo: with gr.Tab("Transcribe Kabyle Audio"): gr.Markdown( f""" # Kabyle Whisper Demo: Transcribe Audio Transcribe Kabyle audio recorded from the microphone or uploaded as a file. This demo uses the fine-tuned checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe Kabyle audio files of arbitrary length. """ ) # Input for microphone recording only microphone_input = gr.Audio(type="filepath", label="Record or Upload Kabyle Audio") gr.Interface( fn=transcribe, inputs=[microphone_input], outputs=gr.Textbox(label="Transcription"), ) demo.launch()