import gradio as gr import nemo.collections.asr as nemo_asr import numpy as np # Load the pre-trained Kabyle ASR model asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_kab_conformer_transducer_large") # Function to transcribe the audio input def transcribe(audio): # Extract audio data and sample rate audio_data, sample_rate = audio # Convert audio data to numpy array if it's not already if isinstance(audio_data, np.ndarray): audio_data = np.array(audio_data) # Transcribe the audio return asr_model.transcribe([audio_data]) # Create the Gradio interface with audio input and text output iface = gr.Interface(fn=transcribe, inputs="audio", outputs="text") # Launch the Gradio interface iface.launch()