Spaces:
Runtime error
Runtime error
File size: 57,451 Bytes
222efb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "9WolnzPUMmAb"
},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"\n",
"from tensorflow import keras\n",
"from tensorflow.keras import datasets, layers, models\n",
"from keras.models import Sequential\n",
"from keras.layers import Conv2D, Lambda, MaxPooling2D # Convolution Layers\n",
"from keras.layers import Dense, Dropout, Flatten # Core Layers\n",
"\n",
"from keras.layers import BatchNormalization\n",
"from keras.preprocessing.image import ImageDataGenerator\n",
"\n",
"from keras.utils.np_utils import to_categorical\n",
"\n",
"from IPython.display import clear_output\n",
"\n",
"import numpy as np\n",
"import seaborn as sns\n",
"from PIL import Image\n",
"import os\n",
"import cv2 as cv\n",
"\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "ErHFgDeyNnFq"
},
"outputs": [],
"source": [
"(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 300
},
"id": "zNH-6C4dPqRA",
"outputId": "84bb1d3c-c08e-46bd-a781-c6b720652229"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"5\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7fc2132d8dd0>"
]
},
"metadata": {},
"execution_count": 16
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAAD4CAYAAACE9dGgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAW7ElEQVR4nO3dfbBd1VnH8e/PEIIEtIlpYwppgxhsA7WhXmkcGEoHpZTpTGC0FHTaWNFgS2xR1NKMY1HLDDqFSmtlvEgkzEApLSDRwVKa6fRFS2iIKSSklEiDEC83DSmQvkFy7uMfZ99ybs496+x7z9teN78Ps+ees5/9suYwPKy19lprKyIwM8vVTw26AGZmnXASM7OsOYmZWdacxMwsa05iZpa1I/p5syM1J45ibj9vaXZY+TE/4KV4UZ1c421vnRvP7quVOvahh1+8LyLO7eR+neooiUk6F7gemAX8c0Rckzr+KObyZp3dyS3NLGFTbOz4Gs/uq/Hgfa8pdeysRY8v6PiGHZp2c1LSLOBTwNuBZcDFkpZ1q2BmNhgBjJX8px1JiyV9SdKjkrZL+mCx/ypJuyVtLbbzGs75sKSdkh6T9LZ29+ikJnYasDMinihufDuwEni0g2ua2YAFwYEo15ws4SBwRURskXQs8JCk+4vYxyPiY40HFxWhi4CTgVcDX5R0UkTrAnXSsX8c8FTD96eLfRNIWi1ps6TNB3ixg9uZWb90qyYWESMRsaX4vB/YwSR5osFK4PaIeDEivgPspF5haqnnTycjYjgihiJiaDZzen07M+tQENSi3AYsGK+kFNvqVteVtAQ4FdhU7Foj6WFJ6yTNK/aVqhw16iSJ7QYWN3w/vthnZpkbI0ptwN7xSkqxDU92PUnHAHcCl0fEC8ANwInAcmAEuHa6Ze0kiX0DWCrpBElHUm/HbujgemZWAQHUiFJbGZJmU09gt0bEXQARMRoRtYgYA27k5SbjlCtH005iEXEQWAPcR72de0dEbJ/u9cysOqZQE0uSJOAmYEdEXNewf1HDYRcA24rPG4CLJM2RdAKwFHgwdY+OxolFxL3AvZ1cw8yqJYAD3Vui63Tg3cAjkrYW+9ZSH5K1vLjdLuBSgIjYLukO6qMcDgKXpZ5MQp9H7JtZ9cUUmoptrxXxNWCyGQQtKz8RcTVwddl7OImZ2UQBtYzWSnUSM7MJ6iP28+EkZmaHELVJW4DV5CRmZhPUO/adxMwsU/VxYk5iZpaxMdfEzCxXromZWdYCUcto5XonMTNr4uakmWUrEC/FrEEXozQnMTOboD7Y1c1JM8uYO/bNLFsRohauiZlZxsZcEzOzXNU79vNJDfmU1Mz6wh37Zpa9mseJmVmuPGLfzLI35qeTZpar+gRwJzEzy1QgDnjakZnlKgIPdjWznMmDXc0sX4FrYmaWOXfsm1m2AnlRRDPLV/2VbfmkhnxKamZ94pfnWoXoiPS/4lmvXNDT+z/2p0taxmpHjyXPfe2Je5Lxo9+f/g/tmeuObBnbMvSZ5Ll7az9Ixt/82SuS8V/8kweS8SoLDqMR+5J2AfuBGnAwIoa6USgzG6zDrSb21ojY24XrmFkFROjwqYmZ2cxT79g/fKYdBfAFSQH8U0QMH3qApNXAaoCjOLrD25lZ7+W1xn6nJT0jIt4EvB24TNKZhx4QEcMRMRQRQ7OZ0+HtzKzX6h37KrW1I2mxpC9JelTSdkkfLPbPl3S/pMeLv/OK/ZL0CUk7JT0s6U3t7tFREouI3cXfPcDdwGmdXM/MqqHGT5XaSjgIXBERy4AV1Cs7y4ArgY0RsRTYWHyHeoVoabGtBm5od4NpJzFJcyUdO/4ZOAfYNt3rmVk1jI/Y70ZNLCJGImJL8Xk/sAM4DlgJrC8OWw+cX3xeCdwSdQ8Ar5C0KHWPTvrEFgJ3Sxq/zm0R8fkOrjdjzXr90mQ85sxOxv/vLa9Ixn+0ovWYpvk/mx7v9NU3psdLDdJ//PDYZPxv/+HcZHzTG25rGfvOgR8lz71m9DeS8Vd/NZLx3E3hRSELJG1u+D48Wd84gKQlwKnAJmBhRIwUoWeo5xOoJ7inGk57utg3QgvTTmIR8QTwxumeb2bVFAEHxkonsb1lxodKOga4E7g8Il4oKj/F/SKKh4PT4iEWZjZBvTnZvaeTkmZTT2C3RsRdxe5RSYsiYqRoLo5Pz9gNLG44/fhiX0v5PEc1s76pFfMn223tqF7lugnYERHXNYQ2AKuKz6uAexr2v6d4SrkCeL6h2Tkp18TMbILxIRZdcjrwbuARSVuLfWuBa4A7JF0CPAlcWMTuBc4DdgI/BN7b7gZOYmZ2iO41JyPia9Cyynb2JMcHcNlU7uEkZmZNvMb+YaZ2VnpQ8XU3fyoZP2l26yVjZrIDUUvG//KTv5uMH/GD9AOtX/vsmpaxY3cfTJ47Z296CMbRmzcl4zmrP508fOZOmtkM4+WpzSx7bk6aWba6/HSy55zEzKyJF0U0s2xFiINOYmaWMzcnzSxb7hM7DM157P+S8Yd+vDgZP2n2aDeL01VXjKxIxp/4fvqVbzef+LmWsefH0uO8Fn7iv5LxXprZC+205yRmZtnyODEzy57HiZlZtiLgYPlFEQfOSczMmrg5aWbZcp+YmWUvnMTMLGfu2D/MHBx5Jhn/5N++Mxm/+tz0a9VmPXxMMv7N938yGU/56N5fTsZ3/vrRyXjtueTy5/z2r72/ZWzXB5KncgLfTB9gPRHhPjEzy5qo+emkmeXMfWJmli3PnTSzvEW9XywXTmJm1sRPJ80sW+GOfTPLnZuTNsH8f/l6Mv7Kf/u5ZLz27L5k/ORTfq9lbPuZ65Lnbhh+SzL+quc6W9NLX2891uuE9M9iA5TT08m2dUZJ6yTtkbStYd98SfdLerz4O6+3xTSzfomoJ7EyWxWUafjeDJx7yL4rgY0RsRTYWHw3sxliLFRqq4K2SSwivgIc2p5ZCawvPq8Hzu9yucxsgCLKbVUw3T6xhRExPmnuGWBhqwMlrQZWAxxFeh6emQ1eIMYyejrZcUkjIki8VyEihiNiKCKGZjOn09uZWR9Eya0KppvERiUtAij+7ulekcxsoGZgx/5kNgCris+rgHu6Uxwzq4SMqmJt+8QkfRo4C1gg6WngI8A1wB2SLgGeBC7sZSFnutreZzs6/8ALR0773JN/59Fk/Ls3zEpfYKw27XtbdVWlllVG2yQWERe3CJ3d5bKYWQUEMDbWnSQmaR3wDmBPRJxS7LsK+APgu8VhayPi3iL2YeASoAZ8ICLua3ePfB5BmFl/BBAqt7V3M83jTAE+HhHLi208gS0DLgJOLs75R0ltmgJOYmY2iW6NE2sxzrSVlcDtEfFiRHwH2Amc1u4kJzEza1a+Y3+BpM0N2+qSd1gj6eFiWuP4tMXjgKcajnm62JfkCeBmdogpDZ/YGxFDU7zBDcDfUE+DfwNcC7RexaAN18TMrFkPh1hExGhE1CJiDLiRl5uMu4HFDYceX+xLck1sBnj9h77dMvbeN6QfIv/Lazcm429552XJ+LGfeSAZtwwFRJeeTk5G0qKGaYsXAOMr5GwAbpN0HfBqYCnwYLvrOYmZ2SS6NsRisnGmZ0laTr0utwu4FCAitku6A3gUOAhcFhFtByI6iZlZsy6Nxm8xzvSmxPFXA1dP5R5OYmbWrCJTispwEjOzicYHu2bCSczMmlRlwcMynMTMrFkPn052m5OYmTWRa2LWT7Xnnm8Ze/Z9r0+e+78bfpSMX/nRW5LxD194QTIe//2zLWOLr27zzrac2jQzSYXWCivDSczMDlF6hYpKcBIzs2auiZlZ1sYGXYDynMTMbCKPEzOz3PnppJnlLaMk5vXEzCxrronNcGPf3JGMX/RXf5aM3/qRjyXjW1ekx5GxonXo5LlrkqcuvXEkGT/4xK70vW3a3Jw0s3wFnnZkZplzTczMcubmpJnlzUnMzLLmJGZmuVK4OWlmufPTScvF/HXpNb3WPJZ+7+TPXPN0Mv7pX7ivZWz7e/4hee7rFv9+Mv5Lf5Ueq117/Ilk3FrLqSbWdsS+pHWS9kja1rDvKkm7JW0ttvN6W0wz66sevgG828pMO7oZOHeS/R+PiOXFdm93i2VmAxMv94u126qgbRKLiK8A+/pQFjOrihlWE2tljaSHi+bmvFYHSVotabOkzQd4sYPbmVm/aKzcVgXTTWI3ACcCy4ER4NpWB0bEcEQMRcTQbOZM83ZmZpObVhKLiNGIqEXEGHAjcFp3i2VmAzXTm5OSFjV8vQDY1upYM8tMZh37bceJSfo0cBawQNLTwEeAsyQtp56LdwGX9rCMNkD6z63J+A9/61XJ+K++649axjZ96Prkud966z8n47+z5Jxk/PkzkmFLqUiCKqNtEouIiyfZfVMPymJmVTGTkpiZHV5EdZ48luEkZmYTVai/qwy/KMTMmnXp6WSLaYvzJd0v6fHi77xivyR9QtLOYgzqm8oU1UnMzJp1b4jFzTRPW7wS2BgRS4GNxXeAtwNLi2019fGobTmJmVmTbg2xaDFtcSWwvvi8Hji/Yf8tUfcA8IpDhnNNyn1i1pHa6J5kfOEnWsd//OcHk+cerSOT8RuX/Hsy/o4LLm997bs3Jc897PW2T2xhRIy/j+8ZYGHx+TjgqYbjni72Jd/d5yRmZhPFlJ5OLpC0ueH7cEQMl75VREidPUZwEjOzZuXTyt6IGJri1UclLYqIkaK5OF5d3w0sbjju+GJfkvvEzKxJj6cdbQBWFZ9XAfc07H9P8ZRyBfB8Q7OzJdfEzKxZl/rEWkxbvAa4Q9IlwJPAhcXh9wLnATuBHwLvLXMPJzEzm6iLK1S0mLYIcPYkxwaQfqnDJJzEzGwCkdeIfScxM2viJGYzxtgZy5Px/3nnUcn4Kct3tYy1GwfWzif3nZqMH33P5mTcEpzEzCxrTmJmlq3MVrFwEjOzZk5iZpYzL4poZllzc9LM8lWh17GV4SRmZs2cxKwqNHRKMv7tD7RZs+v09cn4mUe9NOUylfViHEjGH9h3QvoCY23nDtskPGLfzLKnsXyymJOYmU3kPjEzy52bk2aWNycxM8uZa2JmljcnMTPL1tTedjRwTmIZOOKE1ybj//PeV7eMXfWu25Pn/uYxe6dVpm5YO5p+Sc6Xr1+RjM9b//VuFscKuY0Ta/u2I0mLJX1J0qOStkv6YLF/vqT7JT1e/J3X++KaWV9ElNsqoMwr2w4CV0TEMmAFcJmkZcCVwMaIWApsLL6b2QzQ41e2dVXbJBYRIxGxpfi8H9hB/dXiK4HxOSnrgfN7VUgz66OYwlYBU+oTk7QEOBXYBCxseLHlM8DCFuesBlYDHMXR0y2nmfXRjOzYl3QMcCdweUS8IOknsYgIafLKZUQMA8MAP6P5FcndZpaSUxIr0yeGpNnUE9itEXFXsXtU0qIivgjY05simllfBVl17Letiale5boJ2BER1zWENgCrqL+SfBVwT09KOAMcseQ1yfjzv7IoGX/XX38+Gf/DV9yVjPfSFSPpYRBf/8fWwyjm3/xg8tx5Yx5CMShV6bQvo0xz8nTg3cAjkrYW+9ZST153SLoEeBK4sDdFNLO+m0lJLCK+Rn3822TO7m5xzGzQchvs6hH7ZjZRhBdFNLPM5ZPDnMTMrJmbk2aWrwDcnDSzrOWTw5zEyjpi0c+3jO1bNzd57vtO+HIyfvGxo9MqUzes2X1GMr7lhuXJ+ILPbUvG5+/3WK8cuTlpZlnr5tNJSbuA/UANOBgRQ5LmA58BlgC7gAsj4nvTuX6paUdmdhjpzSoWb42I5RExPoWja0t5OYmZ2QT1wa5RautA15bychIzs2ZjJTdYIGlzw7Z6kqsF8AVJDzXESy3lVYb7xMysyRRqWXsbmoitnBERuyW9Crhf0rcag6mlvMpwTczMJupyn1hE7C7+7gHuBk6ji0t5OYmZ2SHqcyfLbO1Imivp2PHPwDnANl5eygs6XMrrsGlOvvS2dI33pT/el4yv/cV7W8bO+ekfTKtM3TJa+1HL2Jkbrkie+7q/+FYyPv+59DivjBYAtano3oKHC4G7i5WgjwBui4jPS/oGXVrK67BJYmZWUhdfnhsRTwBvnGT/s3RpKS8nMTNrVpGlp8twEjOzZvnkMCcxM2umsXx6O53EzGyiIKsnNk5iZjaB6HhKUV85iZlZMyex6tl1fnpc77ff8Nme3ftTz52YjF//5XOScdVavWyq7nUf/U7L2NLRTclza8moHbacxMwsW+4TM7Pc+emkmWUs3Jw0s4wFTmJmlrl8WpNOYmbWzOPEzCxvMymJSVoM3EJ9XaAAhiPieklXAX8AfLc4dG1EtF50a8BOet+Dyfg73vcrfSpJs5NIl60dj/WyroqAWj7tyTI1sYPAFRGxpVih8SFJ9xexj0fEx3pXPDMbiJlUEyveSDJSfN4vaQdwXK8LZmYDlFESm9Ia+5KWAKcC43NZ1kh6WNI6SfNanLN6/HVOB3ixo8KaWR8EMBbltgooncQkHQPcCVweES8ANwAnAsup19Suney8iBiOiKGIGJrNnC4U2cx6KyDGym0VUOrppKTZ1BPYrRFxF0BEjDbEbwT+vSclNLP+CrLq2G9bE1P9NSU3ATsi4rqG/YsaDruA+muYzGwmiCi3VUCZmtjpwLuBRyRtLfatBS6WtJx63t4FXNqTEppZ/1UkQZVR5unk14DJFrSq7JgwM+tEdWpZZXjEvplNFICX4jGzrLkmZmb5mnnTjszscBIQFRkDVoaTmJk1q8ho/DKcxMysmfvEzCxbEX46aWaZc03MzPIVRC2fpTadxMxsovGleDLhJGZmzTIaYjGlRRHNbOYLIMai1FaGpHMlPSZpp6Qru11eJzEzmyi6tyiipFnAp4C3A8uor36zrJvFdXPSzJp0sWP/NGBnRDwBIOl2YCXwaLdu0Ncktp/v7f1ifO7Jhl0LgL39LMMUVLVsVS0XuGzT1c2yvbbTC+zne/d9MT63oOThR0na3PB9OCKGG74fBzzV8P1p4M2dlrFRX5NYRLyy8bukzREx1M8ylFXVslW1XOCyTVfVyhYR5w66DFPhPjEz66XdwOKG78cX+7rGSczMeukbwFJJJ0g6ErgI2NDNGwy6Y3+4/SEDU9WyVbVc4LJNV5XL1pGIOChpDXAfMAtYFxHbu3kPRUZzpMzMDuXmpJllzUnMzLI2kCTW62kInZC0S9IjkrYeMv5lEGVZJ2mPpG0N++ZLul/S48XfeRUq21WSdhe/3VZJ5w2obIslfUnSo5K2S/pgsX+gv12iXJX43XLV9z6xYhrCt4HfoD7w7RvAxRHRtRG8nZC0CxiKiIEPjJR0JvB94JaIOKXY93fAvoi4pvgfwLyI+FBFynYV8P2I+Fi/y3NI2RYBiyJii6RjgYeA84HfZYC/XaJcF1KB3y1Xg6iJ/WQaQkS8BIxPQ7BDRMRXgH2H7F4JrC8+r6f+H0HftShbJUTESERsKT7vB3ZQHzk+0N8uUS7rwCCS2GTTEKr0LzKAL0h6SNLqQRdmEgsjYqT4/AywcJCFmcQaSQ8Xzc2BNHUbSVoCnApsokK/3SHlgor9bjlxx36zMyLiTdRn3V9WNJsqKep9AVUaI3MDcCKwHBgBrh1kYSQdA9wJXB4RLzTGBvnbTVKuSv1uuRlEEuv5NIRORMTu4u8e4G7qzd8qGS36Vsb7WPYMuDw/ERGjEVGL+ksLb2SAv52k2dQTxa0RcVexe+C/3WTlqtLvlqNBJLGeT0OYLklziw5XJM0FzgG2pc/quw3AquLzKuCeAZZlgvEEUbiAAf12kgTcBOyIiOsaQgP97VqVqyq/W64GMmK/eIT897w8DeHqvhdiEpJ+gXrtC+pTsm4bZNkkfRo4i/pSLaPAR4B/Be4AXgM8CVwYEX3vYG9RtrOoN4kC2AVc2tAH1c+ynQF8FXgEGF+5by31/qeB/XaJcl1MBX63XHnakZllzR37ZpY1JzEzy5qTmJllzUnMzLLmJGZmWXMSM7OsOYmZWdb+H71dPbjcA328AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"prevnum = 0\n",
"print(train_labels[prevnum])\n",
"plt.imshow(train_images[prevnum])\n",
"plt.colorbar()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "iOw6UUoETPny"
},
"outputs": [],
"source": [
"train_images = train_images / 255.0\n",
"\n",
"test_images = test_images / 255.0"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "DuRqfPaaTRps"
},
"outputs": [],
"source": [
"model = Sequential()\n",
"\n",
"#model.add(Lambda(standardize,input_shape=(28,28,1))) \n",
"model.add(Conv2D(filters=64, kernel_size = (3,3), activation=\"relu\", input_shape=(28,28,1)))\n",
"model.add(Conv2D(filters=64, kernel_size = (3,3), activation=\"relu\"))\n",
"\n",
"model.add(MaxPooling2D(pool_size=(2,2)))\n",
"model.add(BatchNormalization())\n",
"model.add(Conv2D(filters=128, kernel_size = (3,3), activation=\"relu\"))\n",
"model.add(Conv2D(filters=128, kernel_size = (3,3), activation=\"relu\"))\n",
"\n",
"model.add(MaxPooling2D(pool_size=(2,2)))\n",
"model.add(BatchNormalization()) \n",
"model.add(Conv2D(filters=256, kernel_size = (3,3), activation=\"relu\"))\n",
" \n",
"model.add(MaxPooling2D(pool_size=(2,2)))\n",
" \n",
"model.add(Flatten())\n",
"model.add(BatchNormalization())\n",
"model.add(Dense(512,activation=\"relu\"))\n",
"\n",
"model.add(Dense(10,activation=\"softmax\"))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"id": "3O9hJ9AwTUhC"
},
"outputs": [],
"source": [
"model.compile(\n",
" optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3, ),\n",
" loss='sparse_categorical_crossentropy',\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5G8Y8suMTWHE",
"outputId": "091c55aa-5e1a-4eaa-e1da-a31302d3513d"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/2\n",
"938/938 [==============================] - 51s 53ms/step - loss: 0.0841 - accuracy: 0.9738 - val_loss: 0.0838 - val_accuracy: 0.9752\n",
"Epoch 2/2\n",
"938/938 [==============================] - 18s 19ms/step - loss: 0.0388 - accuracy: 0.9881 - val_loss: 0.0291 - val_accuracy: 0.9912\n"
]
}
],
"source": [
"history = model.fit(train_images, train_labels, epochs=3, batch_size=64, validation_data=(test_images, test_labels))"
]
},
{
"cell_type": "code",
"source": [
"from matplotlib import pyplot as plt\n",
"plt.plot(history.history['accuracy'])\n",
"plt.plot(history.history['val_accuracy'])\n",
"plt.title('model accuracy')\n",
"plt.ylabel('accuracy')\n",
"plt.xlabel('epoch')\n",
"plt.legend(['train', 'val'], loc='upper left')\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "vk0YBQwAIQtb",
"outputId": "8ed954ff-ece4-40bb-86fa-75d433553aed"
},
"execution_count": 21,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hVVfbw8e8ihVBCC50QaqjSQ1UEKQJiRwEVFGdeHB0dy4htxnEcy1AEFcUyiNjrWHGE0HuToCggSQg1CZ2QkIT0rPePc9BrfqgBcnNvkvV5Hh7PvaetI5DFXnvvs0VVMcYYY0pCJV8HYIwxpvywpGKMMabEWFIxxhhTYiypGGOMKTGWVIwxxpQYSyrGGGNKjCUVY86RiLwpIk8V89i9IjLE2zEZ42uWVIwxxpQYSyrGVHAiEujrGEz5YUnFlGtu2ekBEflBRDJF5HURaSAiC0QkXUSWiEhtj+OvFJHtIpIqIitEpL3Hvm4i8q173kdASJF7XS4iW9xz14lI52LGOFJEvhORkyKSKCKPF9l/kXu9VHf/BPf7KiIyQ0T2iUiaiKxxvxsoIkln+P8wxN1+XEQ+EZF3ReQkMEFEeonIevceB0VklogEe5zfUUQWi0iKiBwWkb+JSEMROSUiYR7HdReRoyISVJxnN+WPJRVTEYwChgJtgCuABcDfgHo4fwfuBhCRNsAHwL3uvvnAVyIS7P6A/QJ4B6gD/Ne9Lu653YC5wJ+AMOA/wDwRqVyM+DKBm4FawEjgDhG52r1uMzfeF92YugJb3POmAz2Afm5MDwKFxfx/chXwiXvP94AC4D6gLtAXGAz82Y0hFFgCRAONgdbAUlU9BKwARntcdzzwoarmFTMOU85YUjEVwYuqelhVk4HVwEZV/U5Vs4HPgW7ucWOAr1V1sftDcTpQBeeHdh8gCHheVfNU9RNgk8c9bgP+o6obVbVAVd8CctzzfpOqrlDVrapaqKo/4CS2Ae7uG4ElqvqBe9/jqrpFRCoBfwDuUdVk957rVDWnmP9P1qvqF+49s1R1s6puUNV8Vd2LkxRPx3A5cEhVZ6hqtqqmq+pGd99bwDgAEQkAbsBJvKaCsqRiKoLDHttZZ/hc3d1uDOw7vUNVC4FEoIm7L1l/+QbWfR7bzYD73fJRqoikAk3d836TiPQWkeVu2SgNuB2nxYB7jV1nOK0uTvntTPuKI7FIDG1E5H8icsgtif27GDEAfAl0EJEWOK3BNFX95hxjMuWAJRVjfnYAJzkAICKC8wM1GTgINHG/Oy3CYzsReFpVa3n8qqqqHxTjvu8D84CmqloTeBU4fZ9EoNUZzjkGZP/KvkygqsdzBOCUzjwVfT35K0AsEKmqNXDKg54xtDxT4G5r72Oc1sp4rJVS4VlSMeZnHwMjRWSw29F8P04Jax2wHsgH7haRIBG5Fujlce5rwO1uq0NEpJrbAR9ajPuGAimqmi0ivXBKXqe9BwwRkdEiEigiYSLS1W1FzQWeFZHGIhIgIn3dPpx4IMS9fxDwKPB7fTuhwEkgQ0TaAXd47Psf0EhE7hWRyiISKiK9Pfa/DUwArsSSSoVnScUYl6rG4fyL+0WclsAVwBWqmququcC1OD88U3D6Xz7zODcGmAjMAk4ACe6xxfFn4AkRSQcew0lup6+7H7gMJ8Gl4HTSd3F3TwK24vTtpABTgUqqmuZecw5OKysT+MVosDOYhJPM0nES5EceMaTjlLauAA4BO4FLPPavxRkg8K2qepYETQUktkiXMeZ8icgy4H1VnePrWIxvWVIxxpwXEekJLMbpE0r3dTzGt6z8ZYw5ZyLyFs4clnstoRiwlooxxpgSZC0VY4wxJaZCv0iubt262rx5c1+HYYwxZcrmzZuPqWrRuU9ABU8qzZs3JyYmxtdhGGNMmSIivzp03MpfxhhjSowlFWOMMSXGkooxxpgSU6H7VM4kLy+PpKQksrOzfR2K14WEhBAeHk5QkK2nZIwpGZZUikhKSiI0NJTmzZvzyxfSli+qyvHjx0lKSqJFixa+DscYU05Y+auI7OxswsLCynVCARARwsLCKkSLzBhTeiypnEF5TyinVZTnNMaUHksqxhhTkeTnwprnIMk7c/QsqfiZ1NRUXn755bM+77LLLiM1NdULERljyo1dy+CVfrDkcYj9n1duYUnFz/xaUsnPz//N8+bPn0+tWrW8FZYxpixLTYSPxsM714AWwE2fwJDHvXIrG/3lZx5++GF27dpF165dCQoKIiQkhNq1axMbG0t8fDxXX301iYmJZGdnc88993DbbbcBP79yJiMjgxEjRnDRRRexbt06mjRpwpdffkmVKlV8/GTGmFKXnwPrXoTVM0AVBj0Kff8CQSFeu6Ulld/wr6+28+OBkyV6zQ6Na/DPKzr+6v4pU6awbds2tmzZwooVKxg5ciTbtm37adjv3LlzqVOnDllZWfTs2ZNRo0YRFhb2i2vs3LmTDz74gNdee43Ro0fz6aefMm7cuBJ9DmOMn9u5BBY8CCm7oN3lMHwy1Irw+m0tqfi5Xr16/WIeyQsvvMDnn38OQGJiIjt37vw/SaVFixZ07doVgB49erB3795Si9cY42Op+yH6EafPpE4rGPcptB5Sare3pPIbfqtFUVqqVav20/aKFStYsmQJ69evp2rVqgwcOPCM80wqV67803ZAQABZWVmlEqsxxofysn8udYnA4Meg710QWPn3zy1BllT8TGhoKOnpZ16VNS0tjdq1a1O1alViY2PZsGFDKUdnjPFLOxe7pa7d0P5KGPZvqNXUJ6FYUvEzYWFhXHjhhVxwwQVUqVKFBg0a/LRv+PDhvPrqq7Rv3562bdvSp08fH0ZqjPG5E/ucUlfc1xAWCeM/h1aDfBpShV6jPioqSosu0rVjxw7at2/vo4hKX0V7XmPKhbxsWDsT1jwLUgkGPAh97oTA4FK5vYhsVtWoM+2zlooxxpQlcdEQ/RCc2AsdroZhT0PNcF9H9RNLKsYYUxak7IHohyE+Guq2gfFfQKtLfB3V/+HVGfUiMlxE4kQkQUQePsP+ZiKyVER+EJEVIhLusW+qiGxzf43x+L6FiGx0r/mRiAS731d2Pye4+5t789mMMaZU5GXB8snwUm/YsxqGPgG3r/XLhAJeTCoiEgC8BIwAOgA3iEiHIodNB95W1c7AE8Bk99yRQHegK9AbmCQiNdxzpgLPqWpr4ATwR/f7PwIn3O+fc48zxpiyK26Bk0xWToH2l8NfYuDCe0qt7+RceLOl0gtIUNXdqpoLfAhcVeSYDsAyd3u5x/4OwCpVzVfVTOAHYLg472ofBHziHvcWcLW7fZX7GXf/YLF3uxtjyqKU3fDeaPhgLARVgVu+guvmQo3Gvo7sd3kzqTQBEj0+J7nfefoeuNbdvgYIFZEw9/vhIlJVROoClwBNgTAgVVXzz3DNn+7n7k9zj/8FEblNRGJEJObo0aPn+YjGGFOCck/BsqfhpT6wby1c+hTcvgZaXOzryIrN1x31k4BZIjIBWAUkAwWqukhEegLrgKPAeqCgJG6oqrOB2eAMKS6Ja/pS9erVycjI8HUYxpjzoQqxXztzTtL2wwXXOQmlRiNfR3bWvJlUknFaF6eFu9/9RFUP4LZURKQ6MEpVU919TwNPu/veB+KB40AtEQl0WyOe1zx9vyQRCQRquscbY4z/Or7LmQ2fsATqtYdb/gct+vs6qnPmzaSyCYgUkRY4P/DHAjd6HuCWtlJUtRB4BJjrfh8A1FLV4yLSGegMLFJVFZHlwHU4fTS3AF+6l5vnfl7v7l+mZXBm58MPP0zTpk258847AXj88ccJDAxk+fLlnDhxgry8PJ566imuuqpo95QxpkzJzXTe07XuRQio7LxapddtEBDk68jOi9eSiqrmi8hdwEIgAJirqttF5AkgRlXnAQOBySKiOOWvO93Tg4DVbj/7SWCcRz/KQ8CHIvIU8B3wuvv968A7IpIApOAksfOz4GE4tPW8L/MLDTvBiCm/unvMmDHce++9PyWVjz/+mIULF3L33XdTo0YNjh07Rp8+fbjyyittjXljyiJV2PEVLPwbpCVC5zHOMOHQhr6OrER4tU9FVecD84t895jH9if8PJLL85hsnBFgZ7rmbpyRZWc65/rzDNnnunXrxpEjRzhw4ABHjx6ldu3aNGzYkPvuu49Vq1ZRqVIlkpOTOXz4MA0blo8/hMZUGMcSYMEDzrK+9TvCrQugWT9fR1WifN1R799+o0XhTddffz2ffPIJhw4dYsyYMbz33nscPXqUzZs3ExQURPPmzc/4yntjjJ/KzYRV051SV1AVGD4Fek6EgPL3I7j8PVE5MGbMGCZOnMixY8dYuXIlH3/8MfXr1ycoKIjly5ezb98+X4dojCkOVfjxS1j4dziZBF1ugCH/gtAGv39uGWVJxQ917NiR9PR0mjRpQqNGjbjpppu44oor6NSpE1FRUbRr187XIRpjfs/ReKfUtXsFNLgARs2BZn19HZXXWVLxU1u3/jxAoG7duqxfv/6Mx9kcFWP8TE4GrJoG61+GoKowYhpE/bFclrrOpGI8pTHGeJsqbP/cKXWlH4CuN8GQx6F6fV9HVqosqRhjzPk6GgfzH4A9K51pA9e/CRG9fR2VT1hSOQNVrRBzQMrg3FBj/EtOOqycChtegeBqcNl0iPoDVArwdWQ+Y0mliJCQEI4fP05YWFi5TiyqyvHjxwkJCfF1KMaUPaqw7VNY9CikH4Ru45xRXdXq+joyn7OkUkR4eDhJSUlUhDcYh4SEEB7uP8uQGlMmHNnhlLr2roZGXWD0O9C0p6+j8huWVIoICgqiRYsWvg7DGONvsk86pa6Nr0JwdRg5A3rcWqFLXWdiScUYY36LKmz9xCl1ZRyG7uNh8ONQ7f8s12SwpGKMMb/u8I9OqWvfGmjcDca+D+E9fB2VX7OkYowxRWWnwYopsPE/EFIDLn8eut9spa5isKRijDGnqcIPHzulrsyj0OMWGPxPqFrH15GVGZZUjDEG4NA2p9S1fx007g43fghNyl+pq6BQ+XJLMu0a1qBD4xolfn1LKsaYii0rFVZMhm9eg5CacMUL0G08VKrk68hKlKqyLPYIzyyMI/ZQOhP6NefxKzuW+H0sqRhjKiZV+P5DWPwPyDwGUbfCoH+Uy1JXzN4UpkbHsmnvCZqHVeXFG7oxslMjr9zLkooxpuI5tBW+ngSJG6BJFNz0X2d0VzkTdyidZxbGsmTHEeqFVuapqy9gTM+mBAV4rxVmScUYU3FkpcLyp2HTHKhSG66c5bxNuJyVupJOnOK5xTv57LskqgcH8sCwttx6YXOqBnv/R75X7yAiw4GZQAAwR1WnFNnfDJgL1ANSgHGqmuTumwaMBCoBi4F7gOrAao9LhAPvquq9IjIBeAZIdvfNUtU5Xno0Y0xZUlgI378Pi/8JWSnO+iaD/u4klnIkJTOXWcsSeHfDPhCY2L8ldwxoRe1qwaUWg9eSiogEAC8BQ4EkYJOIzFPVHz0Omw68rapvicggYDIwXkT6ARcCnd3j1gADVHUF0NXjHpuBzzyu95Gq3uWtZzLGlEEHtjijupK+gfBeMPIz551d5UhmTj6vr9nD7FW7OZWbz3U9wrl3SBsa16pS6rF4s6XSC0hQ1d0AIvIhcBXgmVQ6AH91t5cDX7jbCoQAwYAAQcBhz4uLSBugPr9suRhjjCPrBCx7CmLmQpU6cNXLzhrx5ajUlZtfyAff7OfFZTs5lpHLsI4NmHRpWyIbhPosJm8mlSZAosfnJKDoqjXfA9filMiuAUJFJExV14vIcuAgTlKZpao7ipw7Fqdl4rkoyCgRuRiIB+5T1cQi5yAitwG3AURERJzzwxlj/FRhIWx5D5b800ksPSfCJX+DKrV8HVmJKSxUvvrhADMWxbM/5RS9W9Rh9s3t6B7h+3KerzvqJwGz3P6QVTj9IQUi0hpoj9NnArBYRPqrqmerZCww3uPzV8AHqpojIn8C3gIGFb2hqs4GZgNERUXZKlXGlCcHvnNGdSXHQNM+cNkz0Kjz759XRqgqK+KPMi06jh0HT9K+UQ3euLUnA9vU85v1n7yZVJKBph6fw/m5Ex0AVT2A01JBRKoDo1Q1VUQmAhtUNcPdtwDoi1vqEpEuQKCqbva41nGPS88BppX4Exlj/NOpFFj2JMS8AdXqwdWvQpex4Cc/aEvCt/tPMHVBLBv3pNC0ThVmju3KFZ0bU6mSfz2jN5PKJiBSRFrgJJOxwI2eB4hIXSBFVQuBR3BGggHsByaKyGSc8tcA4HmPU28APihyrUaqetD9eCVQtFxmjClvCgvhu7dhyb8gOxV63w6XPOLMjC8nEo6kMy06jkU/HqZu9WD+dWVHbugVQXCgf/YNeS2pqGq+iNwFLMQZUjxXVbeLyBNAjKrOAwYCk0VEccpfd7qnf4JTutqK02kfrapfeVx+NHBZkVveLSJXAvk4w5MneOXBjDH+IXmzU+o68C1E9HXWh294ga+jKjEHUrN4fkk8n2xOompwIH8d2oY/XtSCapV93Wvx2+SX/dwVS1RUlMbExPg6DGPM2TiVAkv/BZvfgur1YeiT0Hl0uSl1ncjM5ZWVu3hz3V5QGNenGXde0oqw6pV9HdpPRGSzqkadaZ9/pzxjjDmtsAC+fQuWPuEs7dvnzzDwYWe9k3LgVG4+b6zdy6srdpGRm8+13cK5b2gk4bWr+jq0s2JJxRjj/5I2w9d/hYNboNmFTqmrQQdfR1Ui8goK+XBTIi8s3cnR9ByGtG/AA8Pa0rah7+aanA9LKsYY/5V5HJY+Dt++A9UbwLVzoNN15aLUVViofL31IDMWxbH3+Cl6Nq/NKzd1J6p52X5LsiUVY4z/KSyAzW/A0ichNwP63gkDHioXpS5VZfXOY0xbGMu25JO0bRDK67dEMahdfb+Za3I+LKkYY/xL4iaYfz8c/B6a93dKXfXb+TqqEvF9YipTo2NZt+s4TWpV4dnRXbiqaxMC/GyuyfmwpGKM8Q8ZR2HJ47DlXQhtBKNehwtGlYtS166jGcxYFMf8rYeoUy2Yxy7vwE19IqgcGODr0EqcJRVjjG8VFjgvfVz2JORmQr+7YcCDULlsdlR7OpSWzcyl8Xwck0RIYCXuGRzJxItbUt3P55qcj/L7ZMYY/7d/o1PqOrQVWgxw3tVVr62vozpvaafyeHllAm+u3UuhKuP7NOOuQa2p60dzTbzFkooxpvRlHHXeIrzlPQhtDNe/CR2uLvOlrqzcAt5ct5dXViSQnpPP1V2b8NehbWhap2zNNTkfllSMMaWnIB9iXodlT0PeKbjwXrj4Aahc3deRnZf8gkL+uzmJ55fEc/hkDpe0rceDw9vRvlHZH612tiypGGNKx771MH8SHN4GLS9xSl11I30d1XlRVRZsO8T0hXHsPpZJ94havDC2G71bhvk6NJ+xpGKM8a70w7D4MfjhQ6gRDte/BR2uKvOlrrUJx5gaHcsPSWlE1q/O7PE9GNqhQbmYa3I+LKkYY7yjIB++mQ0rJkNeFlz0V7h4EgRX83Vk52VbchpTo2NZvfMYjWuG8Mx1nbm2e3i5mmtyPiypGGNK3t61MP8BOLIdWg2GEdOgbmtfR3Ve9h7LZPqiOP73w0FqVQ3i0ZHtGdenGSFB5W+uyfmwpGKMKTnph2DRP2Drx1CzKYx5F9pdXqZLXUdOZjNz6U4+2pRIUEAl/jKoNRMvbkmNkCBfh+aXLKkYY85fQZ5T6lo+GQpyoP8k6H8/BJfdobRpWXnMXrWLuWv2kldQyA29IvjL4NbUDw3xdWh+zZKKMeb87F3jrMB4dAe0HgojpkJYK19Hdc6y8wp4e/1eXl6xi9RTeVzZpTH3X9qGZmFluy+otFhSMcacm5MHYdGjsO0TqBkBY9+HtpeV2VJXfkEhn32bzHNL4jmYls3Fberx4LC2XNCk/Kx3XxosqRhjzk5BHmx4BVZOdbYvfhAuuq/MlrpUlYXbDzN9URwJRzLo0rQWM0Z3oV+rur4OrUyypGKMKb49q5xRXUdjIXIYjJgCdVr6OqpztmH3caZGx/Ld/lRa1qvGq+O6M6xjwwo/1+R8eDWpiMhwYCYQAMxR1SlF9jcD5gL1gBRgnKomufumASOBSsBi4B5VVRFZATQCstzLXKqqR0SkMvA20AM4DoxR1b3efD5jKoyTB2Dh32H7Z1CrGdzwIbQd4euoztn2A2lMi45jZfxRGtYIYeqoTozqHk5gQCVfh1bmeS2piEgA8BIwFEgCNonIPFX90eOw6cDbqvqWiAwCJgPjRaQfcCHQ2T1uDTAAWOF+vklVY4rc8o/ACVVtLSJjganAGC88mjEVR34ubHgZVk4DLYCBj8CF90BQFV9Hdk72Hz/FjMVxfLnlADWrBPHIiHbc0q+5zTUpQd5sqfQCElR1N4CIfAhcBXgmlQ7AX93t5cAX7rYCIUAwIEAQcPh37ncV8Li7/QkwS0REVfX8HsOYCmr3CqfUdSwe2oyA4ZOhTgtfR3VOjqbnMGvZTt7/Zj8BlYQ7Brbi9gGtqFnF5pqUNG8mlSZAosfnJKB3kWO+B67FKZFdA4SKSJiqrheR5cBBnKQyS1V3eJz3hogUAJ8CT7mJ46f7qWq+iKQBYcAxzxuKyG3AbQAREREl8qDGlCtpSU6p68cvoHZzuPFjaDPM11Gdk/TsPF5btZs5a/aQk1/ImJ5NuWdwJA1q2FwTb/F1R/0knBbFBGAVkAwUiEhroD0Q7h63WET6q+pqnNJXsoiE4iSV8Th9KcWiqrOB2QBRUVHWijHmtPxcWD8LVj0DWggD/+aWusreD+Cc/ALeWb+Pl5YncOJUHiM7N+L+oW1oWa9sv2K/LPBmUkkGmnp8Dne/+4mqHsBpqSAi1YFRqpoqIhOBDaqa4e5bAPQFVqtqsntuuoi8j1Nme9vjfkkiEgjUxOmwN8b8noSlsOBBOJ4AbUfC8H87rZQypqBQ+fy7ZJ5bHE9yahYXta7Lg8Pb0jm8lq9DqzC8mVQ2AZEi0gLnB/5Y4EbPA0SkLpCiqoXAIzgjwQD2AxNFZDJO+WsA8LybLGqp6jERCQIuB5a458wDbgHWA9cBy6w/xZjfkZoIC/8GO+Y5Q4Nv+gQih/o6qrOmqizZcYRnFsYSfziDTk1qMnVUZy6KtLkmpc1rScXt17gLWIgzpHiuqm4XkSeAGFWdBwwEJouI4pS/7nRP/wQYBGzF6bSPVtWvRKQasNBNKAE4CeU195zXgXdEJAFnePJYbz2bMWVefg6sexFWzwBVGPQo9P1LmSx1bdqbwtQFscTsO0GLutV46cbuXNbJ5pr4ilTkf8xHRUVpTEzRkcnGlHM7lzilrpRdzhuEh0+GWmVv0ErsoZM8Ex3H0tgj1A+tzD1DIhkd1ZQgm2vidSKyWVWjzrTP1x31xpjSkrofoh+B2P9BnVYw7lNoPcTXUZ21xJRTPLc4ns+3JFO9ciAPDm/Lrf1aUCXY5pr4A0sqxpR3edk/l7pEYPBj0PcuCKzs68jOyvGMHF5clsB7G/dRSYTbLm7JHQNaUatqsK9DMx6KlVRE5DOcPosFbqe6MaYsiF/klLpO7IH2V8Kwf0Otpr9/nh/JyMlnzurdvLZqN1l5BYyOaso9QyJpVLNszuov74rbUnkZuBV4QUT+C7yhqnHeC8sYc15O7HNKXXFfQ1gkjP8cWg3ydVRnJSe/gA827ufFZQkcz8xleMeGTBrWltb1ba6JPytWUlHVJcASEakJ3OBuJ+KMvHpXVfO8GKMxprjysmHtTFjzLEgADHkc+twJgWWnRFRYqHz5fTIzFsWTdCKLvi3DeGhEO7o2tbkmZUGx+1REJAwYhzOD/TvgPeAinLkhA70RnDHmLMRFQ/RDcGIvdLwGLn0aajbxdVTFpqosjzvCtOg4Yg+l07FxDZ6+phMXR9a14cFlSHH7VD4H2gLvAFeo6kF310ciYmNyjfGllD0Q/TDER0PdNnDzl9ByoK+jOiub951g6oJYvtmbQrOwqrxwQzcu79SISpUsmZQ1xW2pvKCqy8+049fGKhtjvCwvC9Y8D2ueg0qBMPQJ6H1HmSp17TyczrSFcSz+8TB1q1fmyas6MqZnBMGBNtekrCpuUukgIt+paiqAiNQGblDVl70XmjHmjFQhboHTOkndBxeMgkufghqNfR1ZsSWnZvHc4ng++zaJasGBTLq0DX+4qAVVg22WQ1lX3N/Biar60ukPqnrCfemjJRVjSlPKbljwEOxcBPXawS1fQYuLfR1VsaVk5vLy8gTe3rAPgD9e1II/D2xN7Wplp3Vlfltxk0qA54JX7qqO9qfAmNKSe8opc62dCQFBTsuk9+3OdhlwKjef11fvYfaq3WTm5jOqezj3Dm1Dk1o216S8KW5SicbplP+P+/lP7nfGGG9ShdivnTknafuh0/Uw9Emo0cjXkRVLXkEhH36zn5lLEziWkcPQDg14YFhb2jQI9XVoxkuKm1Qewkkkd7ifFwNzvBKRMcZxfJczGz5hCdRrDxO+huYX+TqqYiksVL764QDPLo5n3/FT9GpRh/+M70GPZrV9HZrxsuJOfiwEXnF/GWO8KTfTeU/XuhchoLLzapVet5WJUpeqsmrnMaZFx7L9wEnaNQzljQk9Gdi2ns01qSCKO08lEpgMdAB+WnBBVVt6KS5jKh5V2PGVs2hWWiJ0HuMMEw5t6OvIiuW7/SeYGh3Lht0pNK1ThefHdOXKLo1trkkFU9zy1xvAP4HngEtw3gNmA8mNKSnHEmDBA7BrGdTvCLcugGb9fB1VsSQcyWD6wjiitx8irFowj1/RgRt7N7O5JhVUcZNKFVVd6o4A2wc8LiKbgce8GJsx5V9uJqya7pS6gqrA8CnQcyIE+P98jYNpWcxcspOPYxKpEhTAfUPa8Mf+Lahe2f9jN95T3N/9HBGpBOx0lwhOBuxVocacK1X48UtY+Hc4mQRdboAh/4LQBr6O7HelnsrllRW7eHPdXlThln7NueuS1oRVL1vrsxjvKG5SuQeoCtwNPIlTArvFW0EZU64djXdKXbtXQINOcN3rENHH11H9rqzcAuau3cOrK3eRkZPPNd2acN+QNjStU9XXoRk/8rtJxZ3oOEZVJwEZOCZaYGgAACAASURBVP0pxSIiw4GZQAAwR1WnFNnfDJgL1ANSgHGqmuTumwaMxOm7WYyT2KoA/wVaAQXAV6r6sHv8BOAZnFYUwCxVtWHPxn/kZMCqabD+ZQiqCiOmQdQf/b7UlVdQyMcxicxcspMj6TkMaV+fScPa0q5hDV+HZvzQ7/5pVtUCETnrwfFuMnoJGAokAZtEZJ6q/uhx2HTgbVV9S0QG4YwwGy8i/YALgc7ucWuAAcA3wHRVXS4iwcBSERmhqgvc4z5S1bvONlZjvEoVtn/ulLrSD0DXm5x1TqrX93Vkv6mwUJm/7SAzFsWz51gmUc1q89JN3enZvI6vQzN+rLj/RPpORObhtBIyT3+pqp/9xjm9gARV3Q0gIh8CVwGeSaUD8Fd3eznwxelL4wxdDgYECAIOq+op9zhUNVdEvgXCi/kMxpS+o3EwfxLsWQUNO8H1b0JEb19H9bvW7DzG1OhYtian0aZBdebcHMXg9vVtron5XcVNKiHAccBzPVIFfiupNAESPT4nAUX/Nn0PXItTIrsGCBWRMFVdLyLLgYM4SWWWqu7wPFFEagFXuOeeNkpELgbigftU1fP+p8+7DbgNICIi4jfCN+Y85KTDyqmw4RUIrgaXTYeoP0ClAF9H9pt+SEplWnQcaxKO0aRWFaZf34VrujUhwOaamGIq7oz6YvejnKVJwCy3P2QVTn9IgYi0BtrzcytksYj0V9XVACISCHyAs87LbveYr4APVDVHRP4EvMUvk+DpZ5kNzAaIiopSLz2XqahUYdunsOhRSD8I3cY5o7qq1fV1ZL9p99EMZiyK5+utB6lTLZh/XN6BcX0iqBzo30nQ+J/izqh/A6dl8guq+offOC0ZaOrxOZyfO9FPn38Ap6WCiFQHRqlqqvta/Q2qmuHuWwD0BVa7p84Gdqrq8x7XOu5x6TnAtOI8mzEl5sgOmP8A7F0NjbrA6HegaU9fR/WbDp/M5nl3rknlwErcPTiSif1bEBri/6+EMf6puOWv/3lsh+CUqg78zjmbgEgRaYGTTMYCN3oeICJ1gRT33WKP4IwEA9gPTBSRyTjlrwHA8+45TwE1gf9X5FqNPJY5vhL4RbnMGK/JPumUuja+CsHVYeQM6HGrX5e60rLyeHXlLt5Yu4eCQmVc7wjuGhRJvVCba2LOT3HLX596fhaRD3BGZP3WOfnuRMmFOEOK56rqdhF5AohR1XnAQGCyiChO+etO9/RPcEpXW3FaSNGq+pWIhAN/B2KBb91Ow9NDh+8WkSuBfJzhyROK82zGnDNV2PpfWPQPyDgM3cfD4MehWpivI/tV2XkFvLVuLy+v2EVaVh5XdW3M/UPbEhFmc01MyRB33a2zO0mkLfC1qrYu+ZBKT1RUlMbExPg6DFMWHf7RGdW1by007gaXzYDwHr6O6lflFxTyyeYknl+yk0MnsxnYth4PDGtLx8Y1fR2aKYNEZLOqRp1pX3H7VNL5ZZ/KIZw1VoypWLLTYMUU2PgfCKkBlz8P3W/221KXqhK97RDPLIpj99FMukXU4vmxXenT0n9bU6ZsK275y5ZpMxWbKvzwsTOqK/Mo9JgAgx+Dqv47EXDdrmNMjY7j+8RUWtevzn/G9+DSDg1sronxquK2VK4Blqlqmvu5FjBQVb/47TONKQcObXNGde1fB427w40fQZPuvo7qV21LTmPawjhWxR+lcc0Qpl3XmWu7NSEwwF5Fb7yvuKO//qmqn5/+4A77/Sc/z4A3pvzJSoUVk+Gb1yCkJlzxAnQbD5X884fz3mOZzFgcz1ffH6BW1SD+fll7xvdtRkiQf5bmTPlU3KRypr9F/v0WPGPOVWEh/PAhLH4MMo9B1K0w6B9+W+o6kp7Ni0sT+OCb/QQFVOKuS1pz24CW1LC5JsYHipsYYkTkWZwXRIIz9Hezd0IyxocO/uCM6krcCE2i4Kb/OqO7/NDJ7Dxmr9zN62v2kFdQyNheTbl7UCT1a4T8/snGeElxk8pfgH8AH+GMAlvMz3NKjCn7slJh+dOwaQ5UqQ1XznLeJuyHpa7svALe3bCPl5YncOJUHld0acz9Q9vQvG41X4dmTLFHf2UCD3s5FmNKX2EhfP8+LP4nZKU465sM+ruTWPxMQaHy6bdJPL84ngNp2fSPrMtDw9txQROba2L8R3FHfy0GrlfVVPdzbeBDVR3mzeCM8aoDW5xRXUnfQHgvGPmZ884uP6OqLP7xMM8sjGPnkQy6hNdk+vVd6Nfav19SaSqm4pa/6p5OKACqekJE/HuFIWN+TdYJWPYUxMyFKnXgqpedNeL9sNS1cfdxpkbH8u3+VFrWrcYrN3Vn+AUNba6J8VvFTSqFIhKhqvsBRKQ5Z3hrsTF+rbAQtrwLSx53EkvPiXDJ36BKLV9H9n/sOHiSadGxLI87SoMalZl8bSeu7xFuc02M3ytuUvk7sEZEVuK8Nbg/7kJXxpQJB76DrydBcgw07QOXPQONOv/+eaUsMeUUzy6O54styYRWDuThEe2Y0K+5zTUxZUZxO+qjRSQKJ5F8hzPpMcubgRlTIk6lwLInIeYNqFYPrn4VuowFPysfHcvIYdayBN7buI9KIvzp4lbcMaAVNavaXBNTthS3o/7/AffgLLS1BegDrOcMKysa4xcKC+G7t2HJv5yXQPa+HS55xJkZ70fSs/N4bfUe5qzeTU5+IaOjmnLP4Ega1rS5JqZsKm756x6gJ85qjJeISDvg394Ly5jzkLzZKXUd+BYi+jmlroYX+DqqX8jJL+C9DfuZtTyBlMxcRnZqxF8vbUOretV9HZox56W4SSVbVbNFBBGprKqx7poqxviPUymw9F+w+S2oXh+ufQ06Xe9Xpa6CQuWL75J5dnE8yalZXNg6jAeHtaNLU/8bLGDMuShuUkly30z8BbBYRE4A+7wXljFnobAAvn0Llj7hLO3b588w8GFnvRM/oaosiz3CtOg44g6nc0GTGkwZ1Yn+kfV8HZoxJaq4HfXXuJuPi8hynDXio70WlTHFlRQDX98PB7dAswvhsunQoIOvo/qFmL0pTI2OZdPeEzQPq8qsG7tx2QWNqFTJf1pQxpSUs37TsKqu9EYgxpyVzOOw9HH49m2o3hCunQOdrvOrUlfcoXSeWRjLkh1HqBdamaeuvoAxPZsSZHNNTDlmr683ZUthAWx+A5Y+CbkZ0PcuGPCQX5W6kk6c4rnFO/nsuySqVw7kgWFtufXC5lQNtr9upvzz6p9yERkOzAQCgDmqOqXI/mbAXKAekAKMU9Ukd980YCTOWi6LgXtUVUWkB/AmUAWY7/F9HZy3KDcH9gKjVfWEN5/PlLLETTD/fjj4PTTv75S66rfzdVQ/ScnMZdayBN7dsA8EJvZvyR0DWlG7WrCvQzOm1HgtqYhIAM76K0OBJGCTiMxT1R89DpsOvK2qb4nIIGAyMF5E+gEXAqenPK8BBgArgFeAicBGnKQyHFiA8xblpao6RUQedj8/5K3nM6Uo46jzapUt70JoI7huLnS81m9KXZk5+by+Zg+zV+3mVG4+1/doyj1DImlcq4qvQzOm1HmzpdILSFDV3QAi8iFwFeCZVDoAf3W3l/Pz8sQKhADBOK+FCQIOi0gjoIaqbnCv+TZwNU5SuQoY6J7/Fk4CsqRSlhUWOC99XPYk5GZCv7thwINQOdTXkQGQm1/IB9/s58VlOzmWkcuwjg14YFhbWtf3j/iM8QVvJpUmQKLH5ySgd5FjvgeuxSmRXQOEikiYqq53R5kdxEkqs1R1h/uqmKQi12zibjdQ1YPu9iGgwZmCEpHbcN9bFhERca7PZrxt/0an1HVoK7QY4ExgrOcfU6MKC5V53x9gxuI4ElOy6NOyDq/d3I5uEf63Bosxpc3XPYeTgFkiMgFYBSQDBSLSGmiP81oYcObG9KeY7xtz+1jO+BZlVZ0NzAaIioqyNy37m4wjzoJZ378PoY3h+jehw9V+UepSVVbEH2VadBw7Dp6kfaMavHnrBQxoU89eRW+My5tJJRlo6vE53P3uJ6p6AKelgohUB0apaqqITMR5JUyGu28B0Bd4h58TTdFrHhaRRqp60C2THfHCMxlvKciHmNdh2dOQdwouvBcufgAq+8drS77df4KpC2LZuCeFiDpVmTm2K1d0bmxzTYwpwptJZRMQKSItcH7wjwVu9DxAROoCKapaCDyCMxIMYD8wUUQm45S/BgDPuwnjpIj0wemovxl40T1nHnALMMX975defDZTkvath/mT4PA2aHmJU+qqG+nrqABIOJLOtOg4Fv14mLrVg3niqo6M7RlBcKDNNTHmTLyWVFQ1X0TuAhbiDCmeq6rbReQJIEZV5+F0rE92S1WrgDvd0z/BeQPyVpxO+2hV/crd92d+HlK8wP0FTjL5WET+iPMKmdHeejZTQtIPw+LH4IcPoUY4jH4b2l/pF6WuA6lZPLc4nk+/TaJqcCD3D23DHy5qQbXKvq4YG+PfRLXiditERUVpTEyMr8OoeAry4ZvZsGIy5GVBv7/AxZMguJqvI+NEZi4vr0jgrfX7QGF832bceUlr6thcE2N+IiKbVTXqTPvsn12mdO1dC/MfgCPbodVgGDEN6rb2dVScys3njbV7eXXFLjJz87m2ezj3DW1DE5trYsxZsaRiSkf6IVj0D9j6MdRsCmPehXaX+7zUlVdQyIebEnlh6U6OpucwpH0DHhzeljYNbK6JMefCkorxroI8p9S1fDIU5ED/SdD/fgiu6tOwCguVr7ceZMaiOPYeP0XP5rV55abuRDWv49O4jCnrLKkY79m7xlmB8egOaD0URkyFsFY+DUlVWb3zGNMWxrIt+STtGoYyd0IUl7Stb3NNjCkBllRMyTt5EBY9Cts+gZoRMPZ9aHuZz0td3yemMjU6lnW7jhNeuwrPjenClV2aEGBzTYwpMZZUTMkpyIMNr8DKqc72xQ/CRff5vNS162gGMxbFMX/rIcKqBfPPKzpwY+8IKgcG+DQuY8ojSyqmZOxe6YzqOhYHkcNgxBSo09KnIR1Ky2bm0ng+jkkiJLAS9wyOZOLFLaluc02M8Rr722XOT1qyU+ra/hnUagY3fAhtR/g2pFN5vLwygTfX7qVQlfF9mnHXoNbUrV7Zp3EZUxFYUjHnJj8XNrwMK6eBFsDAR+DCeyDId/M6snILeHPdXl5ZkUB6Tj7XdG3CfUPb0LSOb8tvxlQkllTM2du9wi11xUObETB8MtRp4bNw8gsK+TgmiZlL4zl8ModB7erzwLC2tG/kP0sMG1NRWFIxxZeWBAv/Dj9+AbWbw40fQ5thPgtHVVmw7RDTF8ax+1gmPZrV5sUbutOrhc01McZXLKmY35efC+tnwapnQAvhkr87qzAGhfgspLUJx5gaHcsPSWm0aVCd126OYkh7m2tijK9ZUjG/LWEpLHgQjidA25Ew/N9OK8VHtiWnMTU6ltU7j9G4ZgjPXNeZa7uH21wTY/yEJRVzZqmJsPAR2PGVMzT4pk8gcqjPwtlzLJMZi+L43w8HqV01iEdHtmdcn2aEBNlcE2P8iSUV80v5ObDuRVg13fk86FHo+xeflbqOnMxm5tKdfLQpkeDAStw9qDX/7+KW1AgJ8kk8xpjfZknF/GznEqfUlbIL2l8Bw/4NtSJ8EkpaVh6zV+1i7pq95BUUcmPvCP4yKJJ6oTbXxBh/ZknFQOp+iH4EYv8HdVrBuE+h9RCfhJKdV8Db6/fy8opdpJ7K48oujbn/0jY0C/P9Al7GmN9nSaUiy8t2Sl2rZzgvexz8GPS9CwJLvzWQX1DIp98m8fySnRxMy2ZAm3o8OLwtHRvXLPVYjDHnzpJKRRW/yCl1ndjjrAs/7N9Qq2mph6GqLNx+mOmL4kg4kkHXprV4dnRX+rYKK/VYjDHnz6tJRUSGAzOBAGCOqk4psr8ZMBeoB6QA41Q1SUQuAZ7zOLQdMFZVvxCR1cDpZfnqA9+o6tUiMhD4Etjj7vtMVZ/w0qOVXSf2OqWuuPkQFgnjP4dWg3wSyobdx5kaHct3+1NpVa8ar47rwbCODWyuiTFlmNeSiogEAC8BQ4EkYJOIzFPVHz0Omw68rapvicggYDIwXlWXA13d69QBEoBFAKra3+Men+IkktNWq+rl3nqmMi0vG9bOhDXPggTAkMehz50QGFzqoWw/kMa06DhWxh+lYY0Qpo7qxKju4QQGVCr1WIwxJcubLZVeQIKq7gYQkQ+BqwDPpNIB+Ku7vRz44gzXuQ5YoKqnPL8UkRrAIODWEo67/ImLhuiHnFZKx2vg0qehZpNSD2Pf8UxmLIpn3vcHqFkliL9d1o6b+za3uSbGlCPeTCpNgESPz0lA7yLHfA9ci1MiuwYIFZEwVT3uccxY4NkzXP9qYKmqnvT4rq+IfA8cACap6vaiJ4nIbcBtABERvhkuW2pS9kD0wxAfDXXbws1fQsuBpR7G0fQcXly2k/c37icwQPjzwFb8aUAralaxuSbGlDe+7qifBMwSkQnAKiAZKDi9U0QaAZ2AhWc49wZgjsfnb4FmqpohIpfhtHoii56kqrOB2QBRUVFaMo/hZ/KyYM3zsOY5qBQIQ5+A3neUeqkrPTuP11btZs6aPeTkFzK2Z1PuGRxJ/Rq+e2eYMca7vJlUkgHP4UTh7nc/UdUDOC0VRKQ6MEpVUz0OGQ18rqp5nueJSF2c8to1Htc66bE9X0ReFpG6qnqshJ7H/6lC3AKndZK6Dy4YBZc+BTUal2oY2XkFvLthHy8tT+DEqTxGdm7EpEvb0qKuzTUxprzzZlLZBESKSAucZDIWuNHzADc5pKhqIfAIzkgwTze43xd1HfA/Vc32uFZD4LCqqoj0AioBx89wbvl0fJeTTHYugnrt4JavoMXFpRpCQaHymTvXJDk1i/6RdXlwWDs6hdtcE2MqCq8lFVXNF5G7cEpXAcBcVd0uIk8AMao6DxgITBYRxSl/3Xn6fBFpjtPSWXmGy48FphT57jrgDhHJB7JwhiCXz/KWp9xTTplr7fMQEOy0THrfDgGl11+hqizZcYRnFsYSfziDzuE1mXZdZy5sXbfUYjDG+AepCD93f01UVJTGxMT4OoxzowqxXztzTtL2Q6frYeiTUKNRqYaxaW8KUxfEErPvBC3rVmPSsLaMuKChzTUxphwTkc2qGnWmfb7uqDfn4vguZzZ8whKo3wEmfA3NLyrVEGIPneSZ6DiWxh6hfmhl/n1NJ66PCifI5poYU6FZUilLcjOd93StexECKsOwydBrYqmWuhJTTvHc4ng+35JMaOVAHhrejgn9mlMl2OaaGGMsqZQNqs5iWQv/BmmJ0HmMM0w4tGGphXA8I4cXlyXw3sZ9VBLhtotb8ucBralZ1eaaGGN+ZknF3x1LgAUPwK5lUL8j3LoAmvUrtdtn5OQzZ/VuXlu1m+z8QkZHhXP34Ega1axSajEYY8oOSyr+KjfTWX1x3YsQVAWGT4GeEyGgdH7LcvILeH/jfmYtS+B4Zi4jLmjI/Ze2pXX96qVyf2NM2WRJxd+owo9fwsK/w8kk6HIDDPkXhDYoldsXFipffp/MjEXxJJ3Iol+rMB4a3o4uTWuVyv2NMWWbJRV/cjTeKXXtXgENOsF1r0NEn1K5taqyPO4I06LjiD2UTsfGNfj3NZ3oH1nXhgcbY4rNkoo/yMmAVdNg/csQVBVGPANRfyi1UtfmfSeYuiCWb/am0CysKi/c0I3LOzWiUiVLJsaYs2NJxZdUYfvnTqkr/QB0vclZ56R6/VK5ffzhdJ5ZGMfiHw9TL7QyT159AWN7NrW5JsaYc2ZJxVeOxsH8SbBnFTTsBNe/CRFFVwbwjuTULJ5bHM9n3yZRLTiQB4a15dYLm1M12P44GGPOj/0UKW056bByKmx4BYKrwWXTnVJXJe9PHkzJzOXl5Qm8vWEfAH+8qAV/Htia2tVKf/VHY0z5ZEmltKjCtk9h0aOQfhC6jXNGdVXz/ksXT+Xm8/rqPcxetZvM3HxGdQ/n3qFtaFLL5poYY0qWJZXScGQHzH8A9q6GRl1g9DvQtKfXb5ubX8hHm/Yzc2kCxzJyuLRDAx4Y1pbIBqFev7cxpmKypOJN2SedUtfGVyG4Oox8FnpM8Hqpq7BQ+eqHA8xYFM/+lFP0blGH2Tf3oHtEba/e1xhjLKl4gyps/S8s+gdkHIbuN8Pgf0K1MC/fVlm18xjTomPZfuAk7RvV4I1bezKwTT2ba2KMKRWWVEra4e1OqWvfWmjcDca+D+E9vH7b7/afYGp0LBt2p9C0ThVmju3KFZ0b21wTY0ypsqRSUrLTYMUU2PgfCKkBlz/vtFC8XOpKOJLBMwtjWbj9MHWrB/OvKztyQ68IggNtrokxpvRZUjlfqvDDx86orsyjTp/J4Megah2v3vZgWhbPL97JfzcnUjU4kPuGtOH/9W9Btcr2W2qM8R37CXQ+Dm1zSl3710GTHnDjR9Cku1dvmXoql1dW7OLNdXtRhQn9WnDnJa0Iq17Zq/c1xpji8GpSEZHhwEwgAJijqlOK7G8GzAXqASnAOFVNEpFLgOc8Dm0HjFXVL0TkTWAAkObum6CqW8TpiZ4JXAaccr//1isPlpUKKybDN69BSE244gXoNh4qea/klJVbwNy1e3h15S4ycvK5tls49w6JpGmdql67pzHGnC2vJRURCQBeAoYCScAmEZmnqj96HDYdeFtV3xKRQcBkYLyqLge6utepAyQAizzOe0BVPylyyxFApPurN/CK+9+SFx/t9J1E/QEGPerVUldeQSEfbUrkhaU7OZKew5D29XlgWDvaNrS5JsYY/+PNlkovIEFVdwOIyIfAVYBnUukA/NXdXg58cYbrXAcsUNVTv3O/q3ASlAIbRKSWiDRS1YPn8xBn1Gk0NOwMDTqU+KVPKyxU5m87yIxF8ew5lklUs9q8dFN3ejb3bl+NMcacD28OEWoCJHp8TnK/8/Q9cK27fQ0QKiJFJ3OMBT4o8t3TIvKDiDwnIqc7E4pzv5JRqZJXE8qance46qW13PX+dwQHVOL1W6L47+19LaEYY/yerzvqJwGzRGQCsApIBgpO7xSRRkAnYKHHOY8Ah4BgYDbwEPBEcW8oIrcBtwFEREScX/Ql7IekVKZFx7Em4RhNalVhxvVduLpbEwJsrokxpozwZlJJBpp6fA53v/uJqh7AbamISHVglKqmehwyGvhcVfM8zjldzsoRkTdwElOx7ueePxsnGREVFaVn/1glb/fRDGYsiufrrQepUy2Yxy7vwE19Iqgc6P03FxtjTEnyZlLZBESKSAucH+5jgRs9DxCRukCKqhbitEDmFrnGDe73nuc0UtWD7mivq4Ft7q55wF1u301vIM0r/Skl6PDJbJ5fspOPYxKpHFiJuwdHMrF/C0JDgnwdmjHGnBOvJRVVzReRu3BKVwHAXFXdLiJPADGqOg8YCEwWEcUpf915+nwRaY7T8lhZ5NLviUg9QIAtwO3u9/NxhhMn4AwpvtU7T3b+0rLyeHXlLt5Yu+f/t3fvMVKdZRzHv78CLXKvXTBy3SIXi1gu3SDaaEuR2mAEk6JSBW3TaFLbJgpp1Fij0b/apl5jLJjWUq2VSqxZb6UWKQQrpVsLSElBoEi3tVlQCi1kdVke/zjHuBLYne6cC8P8PskkZ855d+Z59szkmfe857yHzpPB0tnjuHnOBIYP9rUmZlbblJwsVZ+ampqipaWlsPdr7+jk/if384Mn9nK0vYOF00aybN5kxl7ka03MrHZIeiYimk63reyB+rpwovMka55p5duP/5VXjrYzZ/JwbvvA25kyckjZoZmZZcpFJUcRwaM7XuGux3ax7+AxZowdxncWT+dd4/OdAt/MrCwuKjl5cu8h7nh0F9tefJWJIwaxcullzJvyFt/XxMzOaS4qGdvx0hHuXLuLjbsPMnJof+5cdCnXzhzta03MrC64qGRk/6Fj3P373fxq28sMG9CP2z94CUtmj6N/P19rYmb1w0WlSm2vtfO9dXt4aMsB+vU5j1vmTOAzV4xniK81MbM65KLSS0fbO1i5YR/3bnqBjs6TXDdrLLdeNYERQ/qXHZqZWWlcVHph/fNtLHt4K4ePd/ChaSNZPm8SjQ0Dyw7LzKx0Liq90NgwkOljhrH86slMHTW07HDMzM4aLiq9cHHDQH50w6yywzAzO+vkeT8VMzOrMy4qZmaWGRcVMzPLjIuKmZllxkXFzMwy46JiZmaZcVExM7PMuKiYmVlm6vp2wpIOAn/r5Z83AIcyDKcWOOf64JzrQzU5j4uI4afbUNdFpRqSWs50j+ZzlXOuD865PuSVsw9/mZlZZlxUzMwsMy4qvbey7ABK4Jzrg3OuD7nk7DEVMzPLjHsqZmaWGRcVMzPLjItKDyRdI2mXpD2Svnia7RdIWp1uf0pSY/FRZquCnJdJ2ilpu6R1ksaVEWeWesq5S7trJYWkmj/9tJKcJX003dfPSfpp0TFmrYLP9lhJ6yU9m36+55cRZ1Yk3SepTdKOM2yXpO+m/4/tkmZW/aYR4ccZHkAfYC8wHjgf2AZMOaXNZ4F70uXFwOqy4y4g5znAgHT5pnrIOW03GNgIbAaayo67gP08EXgWuDB9PqLsuAvIeSVwU7o8BdhfdtxV5vw+YCaw4wzb5wO/AwTMBp6q9j3dU+neLGBPROyLiH8DPwMWntJmIbAqXV4DzJWkAmPMWo85R8T6iDiePt0MjC44xqxVsp8BvgHcAbQXGVxOKsn508D3I+IwQES0FRxj1irJOYAh6fJQ4OUC48tcRGwE/tlNk4XAA5HYDAyT9NZq3tNFpXujgBe7PG9N1522TUScAI4AFxUSXT4qybmrG0l+6dSyHnNODwuMiYjfFBlYjirZz5OASZL+KGmzpGsKiy4fleT8NWCJpFbgt8CtxYRWmjf6fe9R36rCsbomaQnQBFxRdix5knQe8E3g+pJDKVpfkkNgV5L0RjdKemdEvFpqVPm6Drg/xzr51QAAAyxJREFUIu6W9G7gx5KmRsTJsgOrFe6pdO8lYEyX56PTdadtI6kvSZf5H4VEl49KckbS+4EvAwsi4l8FxZaXnnIeDEwFnpC0n+TYc3OND9ZXsp9bgeaI6IiIF4DdJEWmVlWS843AwwAR8SegP8nEi+eqir7vb4SLSveeBiZKuljS+SQD8c2ntGkGPpUuLwL+EOkIWI3qMWdJM4AVJAWl1o+zQw85R8SRiGiIiMaIaCQZR1oQES3lhJuJSj7bvyTppSCpgeRw2L4ig8xYJTkfAOYCSLqEpKgcLDTKYjUDn0zPApsNHImIv1fzgj781Y2IOCHpFmAtyZkj90XEc5K+DrRERDNwL0kXeQ/JgNji8iKuXoU53wUMAn6enpNwICIWlBZ0lSrM+ZxSYc5rgasl7QQ6gdsiomZ74RXmvBz4oaTPkwzaX1/LPxIlPUTyw6AhHSf6KtAPICLuIRk3mg/sAY4DN1T9njX8/zIzs7OMD3+ZmVlmXFTMzCwzLipmZpYZFxUzM8uMi4qZmWXGRcWsRkm6UtKvy47DrCsXFTMzy4yLilnOJC2RtEXSVkkrJPWR9Lqkb6X3KVknaXjadno6eeN2SY9IujBdP0HS45K2SfqzpLelLz9I0hpJz0t6sMZnyLZzgIuKWY7SqT4+BlweEdNJrkz/BDCQ5CrudwAbSK50BngA+EJEXAr8pcv6B0mmoZ8GvAf471QaM4DPkdz7Yzxwee5JmXXD07SY5WsucBnwdNqJeBPQBpwEVqdtfgL8QtJQYFhEbEjXryKZCmcwMCoiHgGIiHaA9PW2RERr+nwr0Ahsyj8ts9NzUTHLl4BVEfGl/1spfeWUdr2dL6nrDNGd+DttJfPhL7N8rQMWSRoBIOnNksaRfPcWpW0+DmyKiCPAYUnvTdcvBTZExGtAq6QPp69xgaQBhWZhViH/qjHLUUTslHQ78Fh6s68O4GbgGDAr3dZGMu4CyW0U7kmLxj7+N2vsUmBFOqNuB/CRAtMwq5hnKTYrgaTXI2JQ2XGYZc2Hv8zMLDPuqZiZWWbcUzEzs8y4qJiZWWZcVMzMLDMuKmZmlhkXFTMzy8x/AKNj8+GHwD5rAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"model.save('mnist-model.h5')"
],
"metadata": {
"id": "skBnXBF6etJC"
},
"execution_count": 22,
"outputs": []
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "kHncTZNUTYNg",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "acdce7bd-d038-419e-e46e-ea912cd30f1f"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"313/313 [==============================] - 2s 7ms/step - loss: 0.0291 - accuracy: 0.9912\n",
"Test accuracy: 0.9911999702453613\n"
]
}
],
"source": [
"test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=1) \n",
"\n",
"print('Test accuracy:', test_acc)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "aetQfLO0T7W2",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "7ab4fb75-deb4-4320-c3da-c0d318ea80de"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Expected: 7\n",
"Predicted: 7\n"
]
}
],
"source": [
"predictions = model.predict(test_images, verbose=0)\n",
"\n",
"prednum = 0 # predict index\n",
"\n",
"print(f'Expected: {test_labels[prednum]}')\n",
"print(f'Predicted: {np.argmax(predictions[prednum])}')"
]
},
{
"cell_type": "code",
"source": [
"def plot_value_array(i, predictions_array, true_label):\n",
" predictions_array, true_label = predictions_array[i], true_label[i]\n",
" plt.grid(False)\n",
" plt.xticks([0,1,2,3,4,5,6,7,8,9])\n",
" plot = plt.bar(range(10), predictions_array, color=\"#777777\", align=\"center\")\n",
" plt.ylim([0, 1]) \n",
" predicted_label = np.argmax(predictions_array)\n",
" plot[predicted_label].set_color('orange')"
],
"metadata": {
"id": "XUjUnfCrjtJD"
},
"execution_count": 25,
"outputs": []
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"id": "ULoUvS0IXtEc",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 253
},
"outputId": "cbee37a8-6797-4da4-9812-c58ed269be8d"
},
"outputs": [
{
"output_type": "error",
"ename": "error",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31merror\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-27-88d21d8fc9c4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mIMREAD_GRAYSCALE\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m28\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m28\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;36m255\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m28\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m28\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31merror\u001b[0m: OpenCV(4.1.2) /io/opencv/modules/imgproc/src/resize.cpp:3720: error: (-215:Assertion failed) !ssize.empty() in function 'resize'\n"
]
}
],
"source": [
"# Custom Image\n",
"\n",
"img = '/content/nine.png'\n",
"\n",
"image = cv.imread(img, cv.IMREAD_GRAYSCALE)\n",
"image = cv.resize(image, (28, 28))\n",
"image = image / 255\n",
"image = image.reshape((1, 28, 28))\n",
"\n",
"plt.imshow(image.reshape(28, 28))\n",
"plt.colorbar()\n",
"\n",
"predictions = model.predict(image, verbose=0)\n",
"\n",
"plt.xlabel(f\"Predicted: {np.argmax(predictions)}\")\n",
"\n",
"plt.show()\n",
"\n",
"plot_value_array(0, predictions, test_labels)"
]
},
{
"cell_type": "markdown",
"source": [
"# Gradio"
],
"metadata": {
"id": "Q5asD9kQHeRC"
}
},
{
"cell_type": "code",
"source": [
"!pip install gradio"
],
"metadata": {
"id": "E6iH4R3ZcT45",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f283834e-7930-4025-dcb9-a0caba73a486"
},
"execution_count": 28,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting gradio\n",
" Downloading gradio-2.7.5.2-py3-none-any.whl (871 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 871 kB 4.3 MB/s \n",
"\u001b[?25hCollecting analytics-python\n",
" Downloading analytics_python-1.4.0-py2.py3-none-any.whl (15 kB)\n",
"Collecting pydub\n",
" Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
"Collecting paramiko\n",
" Downloading paramiko-2.9.2-py2.py3-none-any.whl (210 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 210 kB 48.5 MB/s \n",
"\u001b[?25hCollecting fastapi\n",
" Downloading fastapi-0.73.0-py3-none-any.whl (52 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 52 kB 941 kB/s \n",
"\u001b[?25hRequirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from gradio) (3.2.2)\n",
"Collecting python-multipart\n",
" Downloading python-multipart-0.0.5.tar.gz (32 kB)\n",
"Collecting aiohttp\n",
" Downloading aiohttp-3.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 1.1 MB 43.7 MB/s \n",
"\u001b[?25hCollecting markdown2\n",
" Downloading markdown2-2.4.2-py2.py3-none-any.whl (34 kB)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from gradio) (2.23.0)\n",
"Collecting pycryptodome\n",
" Downloading pycryptodome-3.13.0-cp35-abi3-manylinux2010_x86_64.whl (2.0 MB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 2.0 MB 38.7 MB/s \n",
"\u001b[?25hRequirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from gradio) (7.1.2)\n",
"Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from gradio) (1.1.5)\n",
"Collecting ffmpy\n",
" Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n",
"Collecting uvicorn\n",
" Downloading uvicorn-0.17.0.post1-py3-none-any.whl (54 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 54 kB 3.2 MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from gradio) (1.19.5)\n",
"Collecting aiosignal>=1.1.2\n",
" Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n",
"Collecting multidict<7.0,>=4.5\n",
" Downloading multidict-6.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (94 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 94 kB 3.6 MB/s \n",
"\u001b[?25hRequirement already satisfied: typing-extensions>=3.7.4 in /usr/local/lib/python3.7/dist-packages (from aiohttp->gradio) (3.10.0.2)\n",
"Collecting frozenlist>=1.1.1\n",
" Downloading frozenlist-1.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 144 kB 50.0 MB/s \n",
"\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->gradio) (21.4.0)\n",
"Collecting yarl<2.0,>=1.0\n",
" Downloading yarl-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (271 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 271 kB 53.2 MB/s \n",
"\u001b[?25hCollecting asynctest==0.13.0\n",
" Downloading asynctest-0.13.0-py3-none-any.whl (26 kB)\n",
"Collecting async-timeout<5.0,>=4.0.0a3\n",
" Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
"Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->gradio) (2.0.10)\n",
"Requirement already satisfied: idna>=2.0 in /usr/local/lib/python3.7/dist-packages (from yarl<2.0,>=1.0->aiohttp->gradio) (2.10)\n",
"Requirement already satisfied: python-dateutil>2.1 in /usr/local/lib/python3.7/dist-packages (from analytics-python->gradio) (2.8.2)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from analytics-python->gradio) (1.15.0)\n",
"Collecting monotonic>=1.5\n",
" Downloading monotonic-1.6-py2.py3-none-any.whl (8.2 kB)\n",
"Collecting backoff==1.10.0\n",
" Downloading backoff-1.10.0-py2.py3-none-any.whl (31 kB)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->gradio) (3.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->gradio) (2021.10.8)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->gradio) (1.24.3)\n",
"Collecting pydantic!=1.7,!=1.7.1,!=1.7.2,!=1.7.3,!=1.8,!=1.8.1,<2.0.0,>=1.6.2\n",
" Downloading pydantic-1.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 10.9 MB 33.7 MB/s \n",
"\u001b[?25hCollecting starlette==0.17.1\n",
" Downloading starlette-0.17.1-py3-none-any.whl (58 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 58 kB 6.6 MB/s \n",
"\u001b[?25hCollecting anyio<4,>=3.0.0\n",
" Downloading anyio-3.5.0-py3-none-any.whl (79 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 79 kB 7.9 MB/s \n",
"\u001b[?25hCollecting sniffio>=1.1\n",
" Downloading sniffio-1.2.0-py3-none-any.whl (10 kB)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->gradio) (1.3.2)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->gradio) (3.0.7)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->gradio) (0.11.0)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->gradio) (2018.9)\n",
"Collecting bcrypt>=3.1.3\n",
" Downloading bcrypt-3.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (61 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 61 kB 509 kB/s \n",
"\u001b[?25hCollecting pynacl>=1.0.1\n",
" Downloading PyNaCl-1.5.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (856 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 856 kB 50.1 MB/s \n",
"\u001b[?25hCollecting cryptography>=2.5\n",
" Downloading cryptography-36.0.1-cp36-abi3-manylinux_2_24_x86_64.whl (3.6 MB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 3.6 MB 33.9 MB/s \n",
"\u001b[?25hRequirement already satisfied: cffi>=1.1 in /usr/local/lib/python3.7/dist-packages (from bcrypt>=3.1.3->paramiko->gradio) (1.15.0)\n",
"Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.1->bcrypt>=3.1.3->paramiko->gradio) (2.21)\n",
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from uvicorn->gradio) (7.1.2)\n",
"Collecting h11>=0.8\n",
" Downloading h11-0.13.0-py3-none-any.whl (58 kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 58 kB 6.4 MB/s \n",
"\u001b[?25hCollecting asgiref>=3.4.0\n",
" Downloading asgiref-3.5.0-py3-none-any.whl (22 kB)\n",
"Building wheels for collected packages: ffmpy, python-multipart\n",
" Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4712 sha256=ca9eb79c3b709540745eb9192ba33eeb8b20e7fe0bd9895152ceaadb3f6f5fe5\n",
" Stored in directory: /root/.cache/pip/wheels/13/e4/6c/e8059816e86796a597c6e6b0d4c880630f51a1fcfa0befd5e6\n",
" Building wheel for python-multipart (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for python-multipart: filename=python_multipart-0.0.5-py3-none-any.whl size=31678 sha256=2dfaa979a3c41f2bc3dd446e266cdbb12251aaffc345ca1433c2b43d04894aca\n",
" Stored in directory: /root/.cache/pip/wheels/2c/41/7c/bfd1c180534ffdcc0972f78c5758f89881602175d48a8bcd2c\n",
"Successfully built ffmpy python-multipart\n",
"Installing collected packages: sniffio, multidict, frozenlist, anyio, yarl, starlette, pynacl, pydantic, monotonic, h11, cryptography, bcrypt, backoff, asynctest, async-timeout, asgiref, aiosignal, uvicorn, python-multipart, pydub, pycryptodome, paramiko, markdown2, ffmpy, fastapi, analytics-python, aiohttp, gradio\n",
"Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 analytics-python-1.4.0 anyio-3.5.0 asgiref-3.5.0 async-timeout-4.0.2 asynctest-0.13.0 backoff-1.10.0 bcrypt-3.2.0 cryptography-36.0.1 fastapi-0.73.0 ffmpy-0.3.0 frozenlist-1.3.0 gradio-2.7.5.2 h11-0.13.0 markdown2-2.4.2 monotonic-1.6 multidict-6.0.2 paramiko-2.9.2 pycryptodome-3.13.0 pydantic-1.9.0 pydub-0.25.1 pynacl-1.5.0 python-multipart-0.0.5 sniffio-1.2.0 starlette-0.17.1 uvicorn-0.17.0.post1 yarl-1.7.2\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import tensorflow as tf\n",
"import numpy as np\n",
"from urllib.request import urlretrieve\n",
"import gradio as gr\n",
"\n",
"model = tf.keras.models.load_model(\"mnist-model.h5\")\n",
"\n",
"def recognize_digit(image):\n",
" image = cv.resize(image, (28, 28))\n",
" image = image / 255\n",
" image = image.reshape((1, 28, 28))\n",
" prediction = model.predict(image).tolist()[0]\n",
" return {str(i): prediction[i] for i in range(10)}\n",
"\n",
"gr.Interface(fn=recognize_digit, \n",
" inputs=\"sketchpad\", \n",
" outputs=gr.outputs.Label(num_top_classes=3),\n",
" live=True,\n",
" css=\".footer {display:none !important}\",\n",
" # title=\"MNIST Sketchpad\",\n",
" description=\"Draw a number 0 through 9 on the sketchpad, and see predictions in real time.\",\n",
" thumbnail=\"https://raw.githubusercontent.com/gradio-app/real-time-mnist/master/thumbnail2.png\").launch();"
],
"metadata": {
"id": "e3cHsKvRcVcQ",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 591
},
"outputId": "7f783403-f5f9-4816-e0de-401af8440edf"
},
"execution_count": 29,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Colab notebook detected. To show errors in colab notebook, set `debug=True` in `launch()`\n",
"Running on public URL: https://46805.gradio.app\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting, check out Spaces (https://huggingface.co/spaces)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"900\"\n",
" height=\"500\"\n",
" src=\"https://46805.gradio.app\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x7fc288e99a10>"
]
},
"metadata": {}
}
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "MNIST Number.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |