ayaderaghul commited on
Commit
01d54da
·
1 Parent(s): e1b9319

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -29
app.py CHANGED
@@ -1,13 +1,11 @@
1
  import gradio as gr
2
  import keras
3
  from keras.models import load_model
4
- # from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
5
  from tensorflow_addons.layers import InstanceNormalization
6
  import matplotlib.pyplot as plt
7
  import numpy as np
8
  import tensorflow as tf
9
 
10
-
11
  cust = {'InstanceNormalization': InstanceNormalization}
12
  model=load_model('g-cycleGAN-photo2monet-500images-epoch10_30_30_30_30_30_1000images_30.h5',cust)
13
 
@@ -21,56 +19,29 @@ IMG_WIDTH = 256
21
  IMG_HEIGHT = 256
22
 
23
  def resize(image,height,width):
24
- '''
25
- Resizing the image
26
- '''
27
  resized_image = tf.image.resize(image,[height,width],method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
28
  return resized_image
29
 
30
  def normalize(input_image):
31
- # def normalize(real_image, input_image)
32
  input_image = (input_image/127.5) - 1
33
  return input_image
34
- # real_image = (real_image/127.5) - 1
35
- # return real_image,input_image
36
 
37
  def load(img_file):
38
- '''
39
- load the image. Since we need only the target image and a
40
- gray scale version of the same, we are going to load one
41
- and create the other from it
42
- '''
43
  img = tf.io.read_file(img_file)
44
  img = tf.io.decode_jpeg(img)
45
-
46
- # w = tf.shape(img)[1]
47
- # w = w//2
48
-
49
- # real_image = img[:,:w,:]
50
-
51
  real_image = tf.cast(img,tf.float32)
52
 
53
  return real_image
54
 
55
  def load_image_test(image_file):
56
- '''
57
- We are not using random jitter here and thus creating
58
- a gray scale image after resizing.
59
- '''
60
  re = load(image_file)
61
  re = resize(re,IMG_HEIGHT,IMG_WIDTH)
62
- # inp = tf.image.rgb_to_grayscale(re)
63
- # re,inp = normalize(re,inp)
64
- # inp = re
65
- # re, inp = normalize(re,inp)
66
  re = normalize(re)
67
- # return inp,re
68
  return re
69
 
70
 
71
  def show_preds_image(image_path):
72
  A = load_image_test(image_path)
73
- # A = (A - 127.5) / 127.5
74
  A = np.expand_dims(A,axis=0)
75
  B = model(A)
76
  # B = np.squeeze(B,axis=0)
 
1
  import gradio as gr
2
  import keras
3
  from keras.models import load_model
 
4
  from tensorflow_addons.layers import InstanceNormalization
5
  import matplotlib.pyplot as plt
6
  import numpy as np
7
  import tensorflow as tf
8
 
 
9
  cust = {'InstanceNormalization': InstanceNormalization}
10
  model=load_model('g-cycleGAN-photo2monet-500images-epoch10_30_30_30_30_30_1000images_30.h5',cust)
11
 
 
19
  IMG_HEIGHT = 256
20
 
21
  def resize(image,height,width):
 
 
 
22
  resized_image = tf.image.resize(image,[height,width],method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
23
  return resized_image
24
 
25
  def normalize(input_image):
 
26
  input_image = (input_image/127.5) - 1
27
  return input_image
 
 
28
 
29
  def load(img_file):
 
 
 
 
 
30
  img = tf.io.read_file(img_file)
31
  img = tf.io.decode_jpeg(img)
 
 
 
 
 
 
32
  real_image = tf.cast(img,tf.float32)
33
 
34
  return real_image
35
 
36
  def load_image_test(image_file):
 
 
 
 
37
  re = load(image_file)
38
  re = resize(re,IMG_HEIGHT,IMG_WIDTH)
 
 
 
 
39
  re = normalize(re)
 
40
  return re
41
 
42
 
43
  def show_preds_image(image_path):
44
  A = load_image_test(image_path)
 
45
  A = np.expand_dims(A,axis=0)
46
  B = model(A)
47
  # B = np.squeeze(B,axis=0)