Update app.py
Browse files
app.py
CHANGED
@@ -13,26 +13,37 @@ from PIL import Image, ImageDraw
|
|
13 |
import requests
|
14 |
from io import BytesIO
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Download example images
|
17 |
def download_example_images():
|
18 |
image_urls = [
|
19 |
# URL format: ("Image Description", "Image URL")
|
20 |
-
("Sunset over Mountains", "https://images.unsplash.com/photo-1501785888041-af3ef285b470"),
|
21 |
-
("Forest Path", "https://images.unsplash.com/photo-1502082553048-f009c37129b9"),
|
22 |
-
("City Skyline", "https://images.unsplash.com/photo-1498598453737-8913e843c47b"),
|
23 |
-
("Beach and Ocean", "https://images.unsplash.com/photo-1507525428034-b723cf961d3e"),
|
24 |
-
("Desert Dunes", "https://images.unsplash.com/photo-1501594907352-04cda38ebc29"),
|
25 |
]
|
26 |
|
27 |
example_images = []
|
28 |
for idx, (description, url) in enumerate(image_urls, start=1):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
return example_images
|
37 |
|
38 |
# Download example images and prepare examples list
|
@@ -44,7 +55,7 @@ def load_image(image):
|
|
44 |
image_np = np.array(image.convert('RGB'))
|
45 |
|
46 |
# Resize the image for better processing
|
47 |
-
resized_image = image.resize((
|
48 |
resized_image_np = np.array(resized_image)
|
49 |
|
50 |
return resized_image_np
|
@@ -58,7 +69,7 @@ def extract_colors(image, k=8):
|
|
58 |
# Ensure data type is float64
|
59 |
pixels = pixels.astype(np.float64)
|
60 |
# Apply K-means clustering to find dominant colors
|
61 |
-
kmeans = KMeans(n_clusters=k, random_state=
|
62 |
kmeans.fit(pixels)
|
63 |
# Convert normalized colors back to 0-255 scale
|
64 |
colors = (kmeans.cluster_centers_ * 255).astype(int)
|
@@ -67,15 +78,15 @@ def extract_colors(image, k=8):
|
|
67 |
# Create an Image for the Color Palette
|
68 |
def create_palette_image(colors):
|
69 |
num_colors = len(colors)
|
70 |
-
palette_height =
|
71 |
-
palette_width =
|
72 |
palette_image = Image.new("RGB", (palette_width, palette_height))
|
73 |
|
74 |
draw = ImageDraw.Draw(palette_image)
|
75 |
for i, color in enumerate(colors):
|
76 |
# Ensure color values are within the valid range and integers
|
77 |
color = tuple(np.clip(color, 0, 255).astype(int))
|
78 |
-
draw.rectangle([i *
|
79 |
|
80 |
return palette_image
|
81 |
|
@@ -91,68 +102,58 @@ def display_palette(colors):
|
|
91 |
|
92 |
# Generate Image Caption Using Hugging Face BLIP
|
93 |
def generate_caption(image):
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
generate_caption.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
98 |
-
processor = generate_caption.processor
|
99 |
-
model = generate_caption.model
|
100 |
-
|
101 |
-
inputs = processor(images=image, return_tensors="pt")
|
102 |
-
output = model.generate(**inputs)
|
103 |
-
caption = processor.decode(output[0], skip_special_tokens=True)
|
104 |
return caption
|
105 |
|
106 |
# Translate Caption to Arabic Using mBART
|
107 |
def translate_to_arabic(text):
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
translate_to_arabic.model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
112 |
-
tokenizer = translate_to_arabic.tokenizer
|
113 |
-
model = translate_to_arabic.model
|
114 |
-
|
115 |
-
tokenizer.src_lang = "en_XX"
|
116 |
-
encoded = tokenizer(text, return_tensors="pt")
|
117 |
-
generated_tokens = model.generate(
|
118 |
**encoded,
|
119 |
-
forced_bos_token_id=
|
120 |
)
|
121 |
-
translated_text =
|
122 |
return translated_text
|
123 |
|
124 |
# Gradio Interface Function (Combining Elements)
|
125 |
def process_image(image):
|
126 |
-
|
127 |
-
|
128 |
-
image
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# Create Gradio Interface using Blocks and add a submit button
|
158 |
with gr.Blocks(css=".gradio-container { height: 1000px !important; }") as demo:
|
|
|
13 |
import requests
|
14 |
from io import BytesIO
|
15 |
|
16 |
+
# Load models globally at startup
|
17 |
+
print("Loading models...")
|
18 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
19 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
20 |
+
mbart_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
21 |
+
mbart_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
22 |
+
print("Models loaded successfully.")
|
23 |
+
|
24 |
# Download example images
|
25 |
def download_example_images():
|
26 |
image_urls = [
|
27 |
# URL format: ("Image Description", "Image URL")
|
28 |
+
("Sunset over Mountains", "https://images.unsplash.com/photo-1501785888041-af3ef285b470?w=512"),
|
29 |
+
("Forest Path", "https://images.unsplash.com/photo-1502082553048-f009c37129b9?w=512"),
|
30 |
+
("City Skyline", "https://images.unsplash.com/photo-1498598453737-8913e843c47b?w=512"),
|
31 |
+
("Beach and Ocean", "https://images.unsplash.com/photo-1507525428034-b723cf961d3e?w=512"),
|
32 |
+
("Desert Dunes", "https://images.unsplash.com/photo-1501594907352-04cda38ebc29?w=512"),
|
33 |
]
|
34 |
|
35 |
example_images = []
|
36 |
for idx, (description, url) in enumerate(image_urls, start=1):
|
37 |
+
try:
|
38 |
+
response = requests.get(url)
|
39 |
+
if response.status_code == 200:
|
40 |
+
img = Image.open(BytesIO(response.content))
|
41 |
+
img.save(f'example{idx}.jpg')
|
42 |
+
example_images.append([f'example{idx}.jpg'])
|
43 |
+
else:
|
44 |
+
print(f"Failed to download image from {url}")
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Exception occurred while downloading image: {e}")
|
47 |
return example_images
|
48 |
|
49 |
# Download example images and prepare examples list
|
|
|
55 |
image_np = np.array(image.convert('RGB'))
|
56 |
|
57 |
# Resize the image for better processing
|
58 |
+
resized_image = image.resize((224, 224), resample=Image.LANCZOS)
|
59 |
resized_image_np = np.array(resized_image)
|
60 |
|
61 |
return resized_image_np
|
|
|
69 |
# Ensure data type is float64
|
70 |
pixels = pixels.astype(np.float64)
|
71 |
# Apply K-means clustering to find dominant colors
|
72 |
+
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10, max_iter=300)
|
73 |
kmeans.fit(pixels)
|
74 |
# Convert normalized colors back to 0-255 scale
|
75 |
colors = (kmeans.cluster_centers_ * 255).astype(int)
|
|
|
78 |
# Create an Image for the Color Palette
|
79 |
def create_palette_image(colors):
|
80 |
num_colors = len(colors)
|
81 |
+
palette_height = 50
|
82 |
+
palette_width = 50 * num_colors
|
83 |
palette_image = Image.new("RGB", (palette_width, palette_height))
|
84 |
|
85 |
draw = ImageDraw.Draw(palette_image)
|
86 |
for i, color in enumerate(colors):
|
87 |
# Ensure color values are within the valid range and integers
|
88 |
color = tuple(np.clip(color, 0, 255).astype(int))
|
89 |
+
draw.rectangle([i * 50, 0, (i + 1) * 50, palette_height], fill=color)
|
90 |
|
91 |
return palette_image
|
92 |
|
|
|
102 |
|
103 |
# Generate Image Caption Using Hugging Face BLIP
|
104 |
def generate_caption(image):
|
105 |
+
inputs = blip_processor(images=image, return_tensors="pt")
|
106 |
+
output = blip_model.generate(**inputs)
|
107 |
+
caption = blip_processor.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return caption
|
109 |
|
110 |
# Translate Caption to Arabic Using mBART
|
111 |
def translate_to_arabic(text):
|
112 |
+
mbart_tokenizer.src_lang = "en_XX"
|
113 |
+
encoded = mbart_tokenizer(text, return_tensors="pt")
|
114 |
+
generated_tokens = mbart_model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
**encoded,
|
116 |
+
forced_bos_token_id=mbart_tokenizer.lang_code_to_id["ar_AR"]
|
117 |
)
|
118 |
+
translated_text = mbart_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
119 |
return translated_text
|
120 |
|
121 |
# Gradio Interface Function (Combining Elements)
|
122 |
def process_image(image):
|
123 |
+
try:
|
124 |
+
# Ensure input is a PIL Image
|
125 |
+
if isinstance(image, np.ndarray):
|
126 |
+
image = Image.fromarray(image)
|
127 |
+
|
128 |
+
# Convert to RGB format for PIL processing
|
129 |
+
image_rgb = image.convert("RGB")
|
130 |
+
|
131 |
+
# Load and resize the entire image
|
132 |
+
resized_image_np = load_image(image_rgb)
|
133 |
+
|
134 |
+
# Convert resized image to PIL Image for Gradio output
|
135 |
+
resized_image_pil = Image.fromarray(resized_image_np)
|
136 |
+
|
137 |
+
# Generate caption using BLIP model
|
138 |
+
caption = generate_caption(image_rgb)
|
139 |
+
|
140 |
+
# Translate caption to Arabic
|
141 |
+
caption_arabic = translate_to_arabic(caption)
|
142 |
+
|
143 |
+
# Extract dominant colors from the entire image
|
144 |
+
colors = extract_colors(resized_image_np, k=8)
|
145 |
+
color_palette = display_palette(colors)
|
146 |
+
|
147 |
+
# Create palette image
|
148 |
+
palette_image = create_palette_image(colors)
|
149 |
+
|
150 |
+
# Combine English and Arabic captions
|
151 |
+
bilingual_caption = f"English: {caption}\nArabic: {caption_arabic}"
|
152 |
+
|
153 |
+
return bilingual_caption, ", ".join(color_palette), palette_image, resized_image_pil
|
154 |
+
except Exception as e:
|
155 |
+
print(f"Error during processing: {e}")
|
156 |
+
return "An error occurred during processing.", "", None, None
|
157 |
|
158 |
# Create Gradio Interface using Blocks and add a submit button
|
159 |
with gr.Blocks(css=".gradio-container { height: 1000px !important; }") as demo:
|