Spaces:
Sleeping
Sleeping
File size: 2,526 Bytes
93f28f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
import json
import openai
import pandas as pd
def summarize(filename, gpt_key, model_name):
openai.api_key = gpt_key
# Opening created all data json file
f = open(filename)
allDataFile = json.load(f)
finaldf = pd.DataFrame()
for source, articles in allDataFile.items():
for article in articles:
title = article['title']
text = article['text']
combined_text = 'title: ' + title + '\n' + text
try:
# GPT-3.5 API for summarization
response = openai.ChatCompletion.create(
model=model_name,
messages=[{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role":
"user",
"content":
f"Please summarize this news article text or youtube video transcript in four sentences or less. If no article/transcript is present, or it is unclear what the transcript is talking about, output 'Unable to summarize.'. {combined_text} "
}])
summarizedData = response['choices'][0]['message']['content']
print(f"SUMMARY: {summarizedData} \n\n")
# GPT-3.5 API for talking points from summarization generated
follow_up = openai.ChatCompletion.create(
model=model_name,
messages=[{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role":
"user",
"content":
f"Using this article, give me five sequential talking points that I can use to make a shortform video. Do not use more than 100 words. If the summarized article says 'Unable to summarize,' output 'No talking points available'. {summarizedData}"
}])
talking_pointsData = follow_up['choices'][0]['message']['content']
print(f"TALKING POINTS: {talking_pointsData} \n\n")
articleinfo = pd.DataFrame.from_records([{
"title":
article["title"],
"source":
source,
"url":
article["url"],
"summarized_text":
summarizedData,
"talking_points":
talking_pointsData
}])
finaldf = pd.concat([finaldf, articleinfo], ignore_index=True)
except openai.error.InvalidRequestError as e:
print(f"An error occurred: {e}")
continue
csvname = 'data.csv'
finaldf.to_csv(csvname, index=False)
return csvname
|