Spaces:
Sleeping
Sleeping
import json | |
import nltk | |
nltk.download('punkt') | |
import re | |
from sklearn.feature_extraction.text import CountVectorizer | |
from joblib import load | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# import seaborn as sns | |
# import matplotlib.pyplot as plt | |
nltk.download('stopwords') | |
stop_words = set(nltk.corpus.stopwords.words('english')) | |
def tokenize(text): | |
wordstoremove = ['Thomas', 'thing', 'quite', 'exist', 'live', 'things', 'you\'re', 'we\'ll', 'really', 'right', | |
'said', 'right', 'refresh', 'realized', 'realize', 'wrong', 'means', 'stuff', 'wants', 'like', | |
'going', 'exactly', 'feel', 'probably', 'likely', 'likes', 'thank', 'oopsie', 'rightfully', 'paul', '23andme', 'didn', 'know', 'just', 'really', 'able', 'actually', 'comes', 'does', 'left'] | |
tokens = [word for word in nltk.word_tokenize(text) if (len(word) > 3 and len(word.strip('Xx/')) > 2 and len(re.sub('\d+', '', word.strip('Xx/'))) > 3) and word not in wordstoremove ] | |
tokens = map(str.lower, tokens) | |
return tokens | |
def lda(input_file): | |
with open(input_file, 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
df = pd.DataFrame(columns=["title", "url", "source", "text"]) | |
dfs_to_concat = [] | |
for source, articles in data.items(): | |
for article in articles: | |
new_df = pd.DataFrame({ | |
"title": [article["title"]], | |
"url": [article["url"]], | |
"source": [source], | |
"text": [article["text"]] | |
}) | |
dfs_to_concat.append(new_df) | |
df = pd.concat([df] + dfs_to_concat, ignore_index=True) | |
vectorizer_count = CountVectorizer(tokenizer=tokenize, stop_words='english', max_df=0.50, max_features=500, lowercase=False, ngram_range=(1,2)) | |
countidf_vectors = vectorizer_count.fit_transform(df.text) | |
feature_names = vectorizer_count.get_feature_names_out() | |
lda_model = load('model_weights/best_lda_model.joblib') | |
W1 = lda_model.fit_transform(countidf_vectors) | |
H1 = lda_model.components_ | |
num_words=15 | |
vocab = np.array(feature_names) | |
top_words = lambda t: [vocab[i] for i in np.argsort(t)[:-num_words-1:-1]] | |
topic_words = ([top_words(t) for t in H1]) | |
topics = [' '.join(t) for t in topic_words] | |
topics_str = '\n\n'.join(topics) | |
histo, barchart = visualize(topics, df, W1, H1, lda_model, vectorizer_count) | |
print("done") | |
return topics_str, histo, barchart | |
def visualize(topics, df, W1, H1, lda_model, vectorizer): | |
#label each document with a topic | |
colnames = ["Topic" + str(i+1) for i in range(lda_model.n_components)] | |
docnames = df['title'] | |
df_doc_topic = pd.DataFrame(np.round(W1, 2), columns = colnames, index=docnames) | |
significant_topic = np.argmax(df_doc_topic.values, axis=1) | |
#histogram of common topics | |
df_doc_topic['dominant_topic'] = significant_topic + 1 | |
histogram_fig, histogram_ax = plt.subplots() | |
df_doc_topic['dominant_topic'].hist(bins=7, ax=histogram_ax) | |
histogram_ax.set_title('Histogram of Dominant Topics') | |
#words of each topic | |
fig, axes = plt.subplots(2, 4, figsize=(30, 15), sharex=True) | |
axes = axes.flatten() | |
for topic_idx, topic in enumerate(lda_model.components_): | |
top_features_ind = topic.argsort()[:-10 - 1:-1] | |
top_features = [vectorizer.get_feature_names_out()[i] for i in top_features_ind] | |
weights = topic[top_features_ind] | |
ax = axes[topic_idx] | |
ax.barh(top_features, weights, height=0.7) | |
ax.set_title(f'Topic {topic_idx +1}') | |
ax.invert_yaxis() | |
return histogram_fig, fig | |