Spaces:
Configuration error
Configuration error
import os | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import login | |
# Authenticate with the access token | |
login("HF_ACCESS_TOKEN", add_to_git_credential=True) | |
# Retrieve token securely | |
token = os.getenv("HF_ACCESS_TOKEN") | |
if token is None: | |
raise ValueError("HF_ACCESS_TOKEN not found. Did you set it in the Secrets?") | |
login(token) | |
model_name = "ayeshaNoor1/Llama_finetunedModel-1b" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True) | |
# Define the text generation function | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(inputs.input_ids, max_length=100, num_return_sequences=1) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Fine-Tuned Llama 3.2 Generator", | |
description="Enter a prompt to generate text using the fine-tuned Llama model.", | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch() | |