llamamodel / app.py
ayeshaNoor1's picture
new update
6322140 verified
import os
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
# Authenticate with the access token
login("HF_ACCESS_TOKEN", add_to_git_credential=True)
# Retrieve token securely
token = os.getenv("HF_ACCESS_TOKEN")
if token is None:
raise ValueError("HF_ACCESS_TOKEN not found. Did you set it in the Secrets?")
login(token)
model_name = "ayeshaNoor1/Llama_finetunedModel-1b"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
# Define the text generation function
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=100, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create a Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs="text",
outputs="text",
title="Fine-Tuned Llama 3.2 Generator",
description="Enter a prompt to generate text using the fine-tuned Llama model.",
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()