import os import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from huggingface_hub import login # Authenticate with the access token login("HF_ACCESS_TOKEN", add_to_git_credential=True) # Retrieve token securely token = os.getenv("HF_ACCESS_TOKEN") if token is None: raise ValueError("HF_ACCESS_TOKEN not found. Did you set it in the Secrets?") login(token) model_name = "ayeshaNoor1/Llama_finetunedModel-1b" tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True) model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True) # Define the text generation function def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs.input_ids, max_length=100, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create a Gradio interface interface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Fine-Tuned Llama 3.2 Generator", description="Enter a prompt to generate text using the fine-tuned Llama model.", ) # Launch the Gradio app if __name__ == "__main__": interface.launch()