ayethuzar's picture
Update app.py with references
3503540 unverified
raw
history blame
1.1 kB
import streamlit as st
from transformers import pipeline
st.title('Sentiment Analysis using Transformers pipeline function')
st.write('This app uses the Hugging Face Transformers [sentiment analyzer](https://huggingface.co/course/chapter1/3?fw=tf) library to classify the sentiment of your input as positive or negative. The web app is built using [Streamlit](https://docs.streamlit.io/en/stable/getting_started.html).')
st.write('References: \n https://medium.com/@rtkilian/deploy-and-share-your-sentiment-analysis-app-using-streamlit-sharing-2ba3ca6a3ead')
st.write(' \t\t\t https://huggingface.co/learn/nlp-course/chapter1/3?fw=pt')
form = st.form(key='sentiment-form')
user_input = form.text_area('Enter your text')
submit = form.form_submit_button('Submit')
if submit:
classifier = pipeline("sentiment-analysis") #using the pipeline() function
result = classifier(user_input)[0]
label = result['label']
score = result['score']
if label == 'POSITIVE':
st.success(f'{label} sentiment (score: {score})')
else:
st.error(f'{label} sentiment (score: {score})')