ayethuzar commited on
Commit
640262e
·
unverified ·
1 Parent(s): 19c34e2

Create sentiment_analysis_using_transformers.py

Browse files
sentiment_analysis_using_transformers.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ st.title('Sentiment Analyser App')
5
+ st.write('This app uses the Hugging Face Transformers [sentiment analyser](https://huggingface.co/course/chapter1/3?fw=tf) library to clasify the sentiment of your input as postive or negative. The web app is built using [Streamlit](https://docs.streamlit.io/en/stable/getting_started.html).')
6
+ st.write(
7
+ 'To find out how this app was developed, please check out my [Medium post](https://medium.com/@rtkilian/deploy-and-share-your-sentiment-analysis-app-using-streamlit-sharing-2ba3ca6a3ead). To see my source code, have a look at my [GitHub repo](https://github.com/rtkilian/streamlit-huggingface).')
8
+
9
+ st.write('*Note: it will take up to 30 seconds to run the app.*')
10
+
11
+ form = st.form(key='sentiment-form')
12
+ user_input = form.text_area('Enter your text')
13
+ submit = form.form_submit_button('Submit')
14
+
15
+ if submit:
16
+ classifier = pipeline("sentiment-analysis")
17
+ result = classifier(user_input)[0]
18
+ label = result['label']
19
+ score = result['score']
20
+
21
+ if label == 'POSITIVE':
22
+ st.success(f'{label} sentiment (score: {score})')
23
+ else:
24
+ st.error(f'{label} sentiment (score: {score})')