import streamlit as st from transformers import pipeline st.title('Sentiment Analysis using Transformers pipeline function') st.write('References:') st.write('1. https://medium.com/@rtkilian/deploy-and-share-your-sentiment-analysis-app-using-streamlit-sharing-2ba3ca6a3ead') st.write('2. https://huggingface.co/learn/nlp-course/chapter1/3?fw=pt') form = st.form(key='sentiment-form') user_input = form.text_area('Enter your text') submit = form.form_submit_button('Submit') if submit: classifier = pipeline("sentiment-analysis") #using the pipeline() function result = classifier(user_input)[0] label = result['label'] score = result['score'] if label == 'POSITIVE': st.success(f'{label} sentiment (score: {score})') else: st.error(f'{label} sentiment (score: {score})')