aymen12's picture
Create app.py
71a175a
raw
history blame
683 Bytes
from transformers import pipeline
import gradio as gr
model_checkpoint = "MuntasirHossain/RoBERTa-base-finetuned-emotion"
model = pipeline("text-classification", model=model_checkpoint)
def classify(text):
label = model(text)[0]["label"]
return label
description = "This AI model is trained to classify texts expressing human emotion into six categories: sadness, joy, love, anger, fear, and surprise."
title = "Classify Texts Expressing Emotion"
examples = [["This is such a beautiful place"]]
iface = gr.Interface(
fn=classify,
inputs=gr.Textbox(),
outputs=gr.Label(),
title=title,
description=description,
examples=examples,
)
iface.launch()