Spaces:
Runtime error
Runtime error
ayoni02
commited on
Commit
Β·
6a8f68c
1
Parent(s):
5b4c17d
added needed files
Browse files- Book reviews/BX-Book-Ratings.csv +0 -0
- Book reviews/BX-Users.csv +0 -0
- Book reviews/BX_Books.csv +0 -0
- README.md +1 -1
- app.py +58 -0
- it works.ipynb +416 -0
Book reviews/BX-Book-Ratings.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Book reviews/BX-Users.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Book reviews/BX_Books.csv
ADDED
Binary file (77.4 MB). View file
|
|
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: Books Recommended System
|
3 |
emoji: π
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.29.0
|
|
|
1 |
---
|
2 |
title: Books Recommended System
|
3 |
emoji: π
|
4 |
+
colorFrom: red
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.29.0
|
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import operator
|
4 |
+
import pandas as pd
|
5 |
+
from surprise import Dataset, Reader
|
6 |
+
from surprise import KNNBasic
|
7 |
+
|
8 |
+
def opendata(a, nrows):
|
9 |
+
df = pd.read_csv(a, nrows=nrows, sep=';', encoding='ISO-8859-1')
|
10 |
+
return df
|
11 |
+
|
12 |
+
def split(df):
|
13 |
+
n=len(df)
|
14 |
+
N=list(range(n))
|
15 |
+
random.seed(2023)
|
16 |
+
random.shuffle(N)
|
17 |
+
train=df.iloc[N[0:(n*4)//5]]
|
18 |
+
test=df.iloc[N[(n*4)//5:]]
|
19 |
+
return train, test
|
20 |
+
|
21 |
+
def red(df):
|
22 |
+
reader = Reader(rating_scale=(1,10)) # rating scale range
|
23 |
+
trainset = Dataset.load_from_df(df[['User-ID','ISBN','Book-Rating']],reader).build_full_trainset()
|
24 |
+
items = trainset.build_anti_testset()
|
25 |
+
return trainset, items
|
26 |
+
|
27 |
+
|
28 |
+
def mod(df, user, items):
|
29 |
+
algo = KNNBasic()
|
30 |
+
algo.fit(df)
|
31 |
+
user_items = list(filter(lambda x: x[0] == user, items))
|
32 |
+
recommendations = algo.test(user_items)
|
33 |
+
recommendations.sort(key=operator.itemgetter(3), reverse=True)
|
34 |
+
return recommendations
|
35 |
+
|
36 |
+
def gl(num):
|
37 |
+
data = opendata('Book reviews\BX-Book-Ratings.csv', nrows=20_000)
|
38 |
+
books = opendata('Book reviews\BX_Books.csv', nrows=None)
|
39 |
+
mapping_dict = books.set_index("ISBN")["Book-Title"].to_dict()
|
40 |
+
train, test = split(data)
|
41 |
+
users=test['User-ID'].tolist()
|
42 |
+
trainset, items = red(train)
|
43 |
+
user = users[int(num)]
|
44 |
+
recommendations = mod(trainset, user, items)
|
45 |
+
op = []
|
46 |
+
for r in recommendations[0:5]:
|
47 |
+
try:
|
48 |
+
op.append(f"{mapping_dict[r[1]]} with Estimated Rating {round(r[3],3)}")
|
49 |
+
except:
|
50 |
+
continue
|
51 |
+
return ('\n\n'.join(map(str, op)))
|
52 |
+
|
53 |
+
text = gr.components.Number(label="pick a number between 1 and 1000")
|
54 |
+
label = gr.components.Text(label="Picked User Top 5 Recommendations:")
|
55 |
+
example = [2, 3]
|
56 |
+
|
57 |
+
intf = gr.Interface(fn=gl, inputs=text, outputs=label, examples=example)
|
58 |
+
intf.launch(inline=False)
|
it works.ipynb
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "30252107",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"import random\n",
|
12 |
+
"import operator\n",
|
13 |
+
"import requests\n",
|
14 |
+
"import numpy as np\n",
|
15 |
+
"import pandas as pd\n",
|
16 |
+
"from scipy import sparse\n",
|
17 |
+
"import sys\n",
|
18 |
+
"from surprise import Dataset, Reader\n",
|
19 |
+
"from surprise import KNNBasic, SVD\n",
|
20 |
+
"from surprise.model_selection import train_test_split\n",
|
21 |
+
"from surprise import accuracy\n",
|
22 |
+
"from surprise.dataset import DatasetAutoFolds"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 2,
|
28 |
+
"id": "c40008b6",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"df1 = pd.read_csv('Book reviews\\BX-Users.csv', sep=';', encoding='ISO-8859-1')\n",
|
33 |
+
"df2 = pd.read_csv('Book reviews\\BX_Books.csv', sep=';', encoding='ISO-8859-1')\n",
|
34 |
+
"df3 = pd.read_csv('Book reviews\\BX-Book-Ratings.csv', sep=';', encoding='ISO-8859-1', nrows=20_000)"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 3,
|
40 |
+
"id": "a422a310",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"text/plain": [
|
46 |
+
"2180"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"execution_count": 3,
|
50 |
+
"metadata": {},
|
51 |
+
"output_type": "execute_result"
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"user_ids = df3['User-ID'].tolist()\n",
|
56 |
+
"user_id = []\n",
|
57 |
+
"for i in user_ids:\n",
|
58 |
+
" if i in user_id:\n",
|
59 |
+
" continue\n",
|
60 |
+
" else:\n",
|
61 |
+
" user_id.append(i)\n",
|
62 |
+
"len(user_id)"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"execution_count": 4,
|
68 |
+
"id": "fea227ef",
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"data = df3"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 5,
|
78 |
+
"id": "663d5ba4",
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [
|
81 |
+
{
|
82 |
+
"data": {
|
83 |
+
"text/plain": [
|
84 |
+
"0 12660\n",
|
85 |
+
"8 1694\n",
|
86 |
+
"7 1526\n",
|
87 |
+
"10 1272\n",
|
88 |
+
"9 1105\n",
|
89 |
+
"5 728\n",
|
90 |
+
"6 663\n",
|
91 |
+
"4 170\n",
|
92 |
+
"3 108\n",
|
93 |
+
"2 45\n",
|
94 |
+
"1 29\n",
|
95 |
+
"Name: Book-Rating, dtype: int64"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
"execution_count": 5,
|
99 |
+
"metadata": {},
|
100 |
+
"output_type": "execute_result"
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"source": [
|
104 |
+
"df3['Book-Rating'].value_counts()"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 6,
|
110 |
+
"id": "c85ef134",
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"n=len(df3)\n",
|
115 |
+
"N=list(range(n))\n",
|
116 |
+
"random.seed(2023)\n",
|
117 |
+
"random.shuffle(N)"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 7,
|
123 |
+
"id": "beb6246d",
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [
|
126 |
+
{
|
127 |
+
"data": {
|
128 |
+
"text/html": [
|
129 |
+
"<div>\n",
|
130 |
+
"<style scoped>\n",
|
131 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
132 |
+
" vertical-align: middle;\n",
|
133 |
+
" }\n",
|
134 |
+
"\n",
|
135 |
+
" .dataframe tbody tr th {\n",
|
136 |
+
" vertical-align: top;\n",
|
137 |
+
" }\n",
|
138 |
+
"\n",
|
139 |
+
" .dataframe thead th {\n",
|
140 |
+
" text-align: right;\n",
|
141 |
+
" }\n",
|
142 |
+
"</style>\n",
|
143 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
144 |
+
" <thead>\n",
|
145 |
+
" <tr style=\"text-align: right;\">\n",
|
146 |
+
" <th></th>\n",
|
147 |
+
" <th>User-ID</th>\n",
|
148 |
+
" <th>ISBN</th>\n",
|
149 |
+
" <th>Book-Rating</th>\n",
|
150 |
+
" </tr>\n",
|
151 |
+
" </thead>\n",
|
152 |
+
" <tbody>\n",
|
153 |
+
" <tr>\n",
|
154 |
+
" <th>15849</th>\n",
|
155 |
+
" <td>2442</td>\n",
|
156 |
+
" <td>8845252906</td>\n",
|
157 |
+
" <td>0</td>\n",
|
158 |
+
" </tr>\n",
|
159 |
+
" <tr>\n",
|
160 |
+
" <th>11349</th>\n",
|
161 |
+
" <td>712</td>\n",
|
162 |
+
" <td>3784419445</td>\n",
|
163 |
+
" <td>8</td>\n",
|
164 |
+
" </tr>\n",
|
165 |
+
" <tr>\n",
|
166 |
+
" <th>1732</th>\n",
|
167 |
+
" <td>277427</td>\n",
|
168 |
+
" <td>0553579274</td>\n",
|
169 |
+
" <td>0</td>\n",
|
170 |
+
" </tr>\n",
|
171 |
+
" <tr>\n",
|
172 |
+
" <th>18333</th>\n",
|
173 |
+
" <td>3363</td>\n",
|
174 |
+
" <td>0553213164</td>\n",
|
175 |
+
" <td>10</td>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" <tr>\n",
|
178 |
+
" <th>11806</th>\n",
|
179 |
+
" <td>882</td>\n",
|
180 |
+
" <td>0553801945</td>\n",
|
181 |
+
" <td>0</td>\n",
|
182 |
+
" </tr>\n",
|
183 |
+
" </tbody>\n",
|
184 |
+
"</table>\n",
|
185 |
+
"</div>"
|
186 |
+
],
|
187 |
+
"text/plain": [
|
188 |
+
" User-ID ISBN Book-Rating\n",
|
189 |
+
"15849 2442 8845252906 0\n",
|
190 |
+
"11349 712 3784419445 8\n",
|
191 |
+
"1732 277427 0553579274 0\n",
|
192 |
+
"18333 3363 0553213164 10\n",
|
193 |
+
"11806 882 0553801945 0"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
"execution_count": 7,
|
197 |
+
"metadata": {},
|
198 |
+
"output_type": "execute_result"
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"source": [
|
202 |
+
"train=data.iloc[N[0:(n*4)//5]]\n",
|
203 |
+
"test=data.iloc[N[(n*4)//5:]]\n",
|
204 |
+
"train.tail()"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": 8,
|
210 |
+
"id": "f27ca18d",
|
211 |
+
"metadata": {},
|
212 |
+
"outputs": [
|
213 |
+
{
|
214 |
+
"name": "stdout",
|
215 |
+
"output_type": "stream",
|
216 |
+
"text": [
|
217 |
+
"[0, 9, 10, 2, 7, 5, 8, 6, 1, 4, 3]\n",
|
218 |
+
"1912\n",
|
219 |
+
"14033\n"
|
220 |
+
]
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"print(train['Book-Rating'].unique().tolist())\n",
|
225 |
+
"print(len(train['User-ID'].unique().tolist()))\n",
|
226 |
+
"print(len(train['ISBN'].unique().tolist()))"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": 9,
|
232 |
+
"id": "94ebe1ac",
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [
|
235 |
+
{
|
236 |
+
"name": "stdout",
|
237 |
+
"output_type": "stream",
|
238 |
+
"text": [
|
239 |
+
"<class 'surprise.trainset.Trainset'>\n"
|
240 |
+
]
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"source": [
|
244 |
+
"reader = Reader(rating_scale=(1,10)) # rating scale range\n",
|
245 |
+
"trainset = Dataset.load_from_df(train[['User-ID','ISBN','Book-Rating']],reader).build_full_trainset()\n",
|
246 |
+
"print(type(trainset))"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 10,
|
252 |
+
"id": "25d0a6ff",
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [
|
255 |
+
{
|
256 |
+
"name": "stdout",
|
257 |
+
"output_type": "stream",
|
258 |
+
"text": [
|
259 |
+
"Computing the msd similarity matrix...\n",
|
260 |
+
"Done computing similarity matrix.\n"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"data": {
|
265 |
+
"text/plain": [
|
266 |
+
"<surprise.prediction_algorithms.knns.KNNBasic at 0x11a39f0a3d0>"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
"execution_count": 10,
|
270 |
+
"metadata": {},
|
271 |
+
"output_type": "execute_result"
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"source": [
|
275 |
+
"# Use the KNNBasic algorithm to train the model\n",
|
276 |
+
"algo = KNNBasic()\n",
|
277 |
+
"#algo = SVD()\n",
|
278 |
+
"algo.fit(trainset)"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 11,
|
284 |
+
"id": "a4155aff",
|
285 |
+
"metadata": {},
|
286 |
+
"outputs": [],
|
287 |
+
"source": [
|
288 |
+
"testset = Dataset.load_from_df(test[['User-ID','ISBN','Book-Rating']],reader).build_full_trainset().build_anti_testset()"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": 12,
|
294 |
+
"id": "376eb001",
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"items = trainset.build_anti_testset()"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": 13,
|
304 |
+
"id": "dc366b18",
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": [
|
308 |
+
"books = df2\n",
|
309 |
+
"mapping_dict = books.set_index(\"ISBN\")[\"Book-Title\"].to_dict()"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"cell_type": "code",
|
314 |
+
"execution_count": 14,
|
315 |
+
"id": "2fe30c88",
|
316 |
+
"metadata": {},
|
317 |
+
"outputs": [],
|
318 |
+
"source": [
|
319 |
+
"users=test['User-ID'].tolist()"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"execution_count": 29,
|
325 |
+
"id": "afc45dd3",
|
326 |
+
"metadata": {},
|
327 |
+
"outputs": [
|
328 |
+
{
|
329 |
+
"data": {
|
330 |
+
"text/plain": [
|
331 |
+
"1928"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
"execution_count": 29,
|
335 |
+
"metadata": {},
|
336 |
+
"output_type": "execute_result"
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"source": [
|
340 |
+
"random.seed()\n",
|
341 |
+
"rd = random.randint(0,len(users))\n",
|
342 |
+
"users[rd]"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 30,
|
348 |
+
"id": "1fff04c1",
|
349 |
+
"metadata": {},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"user = users[rd]\n",
|
353 |
+
"user_items = list(filter(lambda x: x[0] == user, items))\n",
|
354 |
+
"recommendations = algo.test(user_items)\n",
|
355 |
+
"recommendations.sort(key=operator.itemgetter(3), reverse=True)"
|
356 |
+
]
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"cell_type": "code",
|
360 |
+
"execution_count": 31,
|
361 |
+
"id": "de2718ce",
|
362 |
+
"metadata": {},
|
363 |
+
"outputs": [
|
364 |
+
{
|
365 |
+
"name": "stdout",
|
366 |
+
"output_type": "stream",
|
367 |
+
"text": [
|
368 |
+
"User 1928 Recommendation Top 5:\n",
|
369 |
+
" [Item] Four Blind Mice, [Estimated Rating] 10\n",
|
370 |
+
" [Item] KJV Giant Print Reference Bible, Personal Size Bronze Edition, [Estimated Rating] 10\n",
|
371 |
+
" [Item] So You Want to Be a Wizard: The First Book in the Young Wizards Series, [Estimated Rating] 10\n",
|
372 |
+
" [Item] The Princess Diaries, [Estimated Rating] 10\n",
|
373 |
+
" [Item] Memoirs of a Geisha, [Estimated Rating] 10\n"
|
374 |
+
]
|
375 |
+
}
|
376 |
+
],
|
377 |
+
"source": [
|
378 |
+
"print(f\"User {user} Recommendation Top 5:\")\n",
|
379 |
+
"for r in recommendations[0:5]:\n",
|
380 |
+
" try: \n",
|
381 |
+
" print(f\" [Item] {mapping_dict[r[1]]}, [Estimated Rating] {round(r[3],3)}\")\n",
|
382 |
+
" except:\n",
|
383 |
+
" continue"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": null,
|
389 |
+
"id": "bf7c2fcb",
|
390 |
+
"metadata": {},
|
391 |
+
"outputs": [],
|
392 |
+
"source": []
|
393 |
+
}
|
394 |
+
],
|
395 |
+
"metadata": {
|
396 |
+
"kernelspec": {
|
397 |
+
"display_name": "Python 3 (ipykernel)",
|
398 |
+
"language": "python",
|
399 |
+
"name": "python3"
|
400 |
+
},
|
401 |
+
"language_info": {
|
402 |
+
"codemirror_mode": {
|
403 |
+
"name": "ipython",
|
404 |
+
"version": 3
|
405 |
+
},
|
406 |
+
"file_extension": ".py",
|
407 |
+
"mimetype": "text/x-python",
|
408 |
+
"name": "python",
|
409 |
+
"nbconvert_exporter": "python",
|
410 |
+
"pygments_lexer": "ipython3",
|
411 |
+
"version": "3.9.12"
|
412 |
+
}
|
413 |
+
},
|
414 |
+
"nbformat": 4,
|
415 |
+
"nbformat_minor": 5
|
416 |
+
}
|